• Title/Summary/Keyword: Fast Information Channel

Search Result 431, Processing Time 0.028 seconds

FFT-based Channel Estimation Scheme in LTE-A Downlink System (LTE-A 하향링크 시스템을 위한 새로운 FFT 기반 채널 추정 기법)

  • Moon, Sangmi;Chu, Myeonghun;Kim, Hanjong;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.11-20
    • /
    • 2016
  • In this paper, we propose the channel estimation scheme for Long Term Evolution-Advanced (LTE-A) downlink system. The proposed scheme uses the fast fourier transform (FFT) interpolation scheme for the user moving at a high speed. The FFT interpolation scheme converts the channel frequency response obtained from least square (LS) or minimum mean square error (MMSE) channel estimation scheme to time domain channel impulse response by taking the inverse FFT (IFFT). After windowing the channel response in the time domain, we can obtain the channel frequency response by taking the FFT. We perform the system level simulation based on 20MHz bandwidth of 3GPP LTE-A downlink system. Simulation results show that the proposed channel estimation scheme can improve signal-to-noise-plus-interference ratio (SINR), throughput, and spectral efficiency of conventional system.

A Study on the Performance of WAVE Communication System using Jakes Channel Model (Jakes 채널 모델을 이용한 WAVE 통신시스템 성능에 관한 연구)

  • Oh, Se-Kab;Choi, Jae-Myeong;Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.943-949
    • /
    • 2009
  • In this paper, the 5.9GHz WAVE(Wireless Access in Vehicular Environments) channel modeling is used by the Jakes channel model for the suitability of the fast wireless channel fluctuation. The performance analysed the fading signal constellation and the spectrum in the IEEE 802.11p spectrum mask, the Doppler effect, the modulation scheme. In addition, the vehicular speed, exactly the performance analysis the WAVE communication systems follow the Doppler effect.

  • PDF

Novel Adaptive Distributed Compressed Sensing Algorithm for Estimating Channels in Doubly-Selective Fading OFDM Systems

  • Song, Yuming;He, Xueyun;Gui, Guan;Liang, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2400-2413
    • /
    • 2019
  • Doubly-selective (DS) fading channel is often occurred in many orthogonal frequency division multiplexing (OFDM) communication systems, such as high-speed rail communication systems and underwater acoustic (UWA) wireless networks. It is challenging to provide an accurate and fast estimation over the doubly-selective channel, due to the strong Doppler shift. This paper addresses the doubly selective channel estimation problem based on complex exponential basis expansion model (CE-BEM) in OFDM systems from the perspective of distributed compressive sensing (DCS). We propose a novel DCS-based improved sparsity adaptive matching pursuit (DCS-IMSAMP) algorithm. The advantage of the proposed algorithm is that it can exploit the joint channel sparsity information using dynamic threshold, variable step size and tailoring mechanism. Simulation results show that the proposed algorithm achieves 5dB performance gain with faster operation speed, in comparison with traditional DCS-based sparsity adaptive matching pursuit (DCS-SAMP) algorithm.

A Modified FCM for Nonlinear Blind Channel Equalization using RBF Networks

  • Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • In this paper, a modified Fuzzy C-Means (MFCM) algorithm is presented for nonlinear blind channel equalization. The proposed MFCM searches the optimal channel output states of a nonlinear channel, based on the Bayesian likelihood fitness function instead of a conventional Euclidean distance measure. In its searching procedure, all of the possible desired channel states are constructed with the elements of estimated channel output states. The desired state with the maximum Bayesian fitness is selected and placed at the center of a Radial Basis Function (RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with that of a hybrid genetic algorithm (GA merged with simulated annealing (SA): GASA), and the relatively high accuracy and fast searching speed are achieved.

Fast Side Information Generation Method using Adaptive Search Range (적응적 탐색 영역을 이용한 보조 정보 생성의 고속화 방법)

  • Park, Dae-Yun;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.179-190
    • /
    • 2012
  • In Distributed Video Coding(DVC), a low complexity encoder can be realized by shifting complex processes of encoder such as motion estimation to decoder. Since not only motion estimation/compensation processes but also channel decoding process needs to be performed at DVC decoder, the complexity of a decoder is significantly increased in consequence. Therefore, various fast channel decoding methods are proposed for the most computationally complex part, which is the channel decoding process in DVC decoding. As the channel decoding process becomes faster using various methods, however, the complexity of the other processes are relatively highlighted. For instance, the complexity of side information generation process in the DVC decoder is relatively increased. In this paper, therefore, a fast method for the DVC decoding is proposed by using adaptive search range method in side information generation process. Experimental results show that the proposed method achieves time saving of about 63% in side information generation process, while its rate distortion performance is degraded only by about 0.17% in BDBR.

Self-Organizing Map for Blind Channel Equalization

  • Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.609-617
    • /
    • 2010
  • This paper is concerned with the use of a selforganizing map (SOM) to estimate the desired channel states of an unknown digital communication channel for blind equalization. The modification of SOM is accomplished by using the Bayesian likelihood fitness function and the relation between the desired channel states and channel output states. At the end of each clustering epoch, a set of estimated clusters for an unknown channel is chosen as a set of pre-defined desired channel states, and used to extract the channel output states. Next, all of the possible desired channel states are constructed by considering the combinations of extracted channel output states, and a set of the desired states characterized by the maximal value of the Bayesian fitness is subsequently selected for the next SOM clustering epoch. This modification of SOM makes it possible to search the optimal desired channel states of an unknown channel. In simulations, binary signals are generated at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The performance of the proposed method is compared with those of the "conventional" SOM and an existing hybrid genetic algorithm. Relatively high accuracy and fast search speed have been achieved by using the proposed method.

A Design of Digital Channel Equalizer Mixing ″LMS″ and ″Stop-and-Go″ Algorithm in VSB Transmission Receiver (VSB 전송 방식에서의 LMS 알고리듬과 Stop and Go 알고리듬을 혼합한 디지털 채널 등화기 설계)

  • 이주용;정중완;이재흥;김정호
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.899-902
    • /
    • 1999
  • In this paper, we designed a equalizer that moved the multipath of channel in 8-VSB transmission receiver. After doing the initial equalization with "LMS(Least Mean Square)"aigorithm. this equalizer used "Stop-and-Go" algorithm. Because of estimating SER(Symbol to Error Ratio) every a training sequence, this can positively cope with transformation of channel and because of using fast clock than symbol-clock(10.76 MHz), we are able to reduce a multiplier.

  • PDF

A Comparison of FFH/SSMA and DS/CDMA Communications in a Rician Fading Channel

  • Jeungmin Joo;Kim, Kiseon
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.497-500
    • /
    • 2000
  • In this paper, we compare the bit-error-rate performance of the fast-frequency-hopped spread-spectrum multiple-access (FFH/SSMA) and direct-sequence code-division multiple access (DS/CDMA) systems in a Rician fading channel. Each system has a same data rate, bandwidth and transmits over a Rician fading channel. The results illustrate tradoffs in performance between the FFH/SSMA and DS/CDMA systems as a function of the parameters such as average signal to noise ratio and processing gain. The performance of the FFH/SSMA system is shown to be less sensitive to the change of fading environments, while the change of processing gain and average signal to noise ratio gives considerable affect to the FFH/SSMA system compared with the DS/CDMA system. Without respect to the change of system parameters, for most of Rician fading channels (except non-fading channel), FFH/SSMA system gives better performance than DS/CDMA system in BBR < 10$\^$-3/.

  • PDF

QoS-Aware Group Scan Scheduling in WiMAX Networks (WiMAX 네트워크에서 QoS 기반의 그룹 스캔 스케쥴링 기법)

  • Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.186-195
    • /
    • 2010
  • For the fast target base station channel decision in WiMAX networks, fast group scanning scheme was suggested, in which mobile stations in proximity of each other form a group and scan the candidate channels dispersively. However, the previous group scanning scheme does not consider the different QoS requirements of each MS in a group. In this paper we propose the enhanced group scanning scheme, so-called QoS-aware group scan scheduling scheme, that makes mobile stations in a group scan the candidate channels without deteriorating the QoS requirements. We introduce the QoS-aware channel scanning concept of a individual mobile station and show the different scanning latencies due to the different QoS requirements. With the help of the efficient channel allocation by the serving BS, in the proposed scanning scheme, a mobile station with relatively higher QoS in a group scans less amount of candidate channels than the others with relatively lower QoS, while the mobile stations in a group still guarantees the fast target base station decision. The performance results show that our proposed scanning scheme results in the fast target base station decision while considering the QoS requirements of each MS.

Fast Congestion Control to Transmit Bursty Traffic Rapidly in Satellite Random Access Channel (위성 랜덤 액세스 채널에서 Bursty 트래픽의 신속한 전송을 위한 빠른 혼잡 제어 기법)

  • Noh, Hong-Jun;Lee, Yoon-Seong;Lim, Jae-Sung;Park, Hyung-Won;Lee, Ho-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1031-1041
    • /
    • 2014
  • In this paper, we propose a traffic load control scheme, called fast congestion control (FCC), for a satellite channel using enhanced random access schemes. The packet repetition used by enhanced random access schemes increases not only the maximum throughput but also the sensitivity to traffic load. FCC controls traffic load by using an access probability, and estimates backlogged traffic load. If the backlogged traffic load exceeds the traffic load corresponding to the maximum throughput, FCC recognizes congestion state, and processes the backlogged traffic first. The new traffic created during the congestion state accesses the channel after the end of congestion state. During the congestion state, FCC guarantees fast transmission of the backlogged traffic. Therefore, FCC is very suitable for the military traffic which has to be transmit urgently. We simulate FCC and other traffic load control schemes, and validate the superiority of FCC in latency.