• Title/Summary/Keyword: Fast Computation

Search Result 750, Processing Time 0.029 seconds

Low Computational Adaptive Expanded Block Search Motion Estimation Method (저연산 적응형 확장 블록 탐색 움직임 추정 기법)

  • Choi, Su-Woo;Yun, Jong-Ho;Cho, Tae-Kyung;Choi, Myung-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1254-1259
    • /
    • 2010
  • In this paper, Low Computational Adaptive Expanded Block Search Motion Estimation Method is proposed. Proposed method classifies ME blocks as Average Motion Block(AMB) and Local Motion Block(LMB) according to correlation of reference frame. It could reduce the computational complexity with performing Modified Fast Search(MFS). And accuracy of MV is also increased by 4 sub-blocks on LMB and Block Expansion(BE). The experimental results show that the proposed method has better performance that increased 1.8dB than Diamond Search and 0.6dB than Full Search with 7.5 % computation of Full Search. The proposed method could be applied to video compression and Frame Rate Conversion(FRC).

Nonrigid Lung Registration between End-Exhale and End-Inhale CT Scans Using a Demon Algorithm (데몬 알고리즘을 이용한 호기-흡기 CT 영상 비강체 폐 정합)

  • Yim, Ye-Ny;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • This paper proposes a deformable registration method using a demon algorithm for aligning the lungs between end-exhale and end-inhale CT scans. The lungs are globally aligned by affine transformation and locally deformed by a demon algorithm. The use of floating gradient force allows a fast convergence in the lung regions with a weak gradient of the reference image. The active-cell-based demon algorithm helps to accelerate the registration process and reduce the probability of deformation folding because it avoids unnecessary computation of the displacement for well-matched lung regions. The performance of the proposed method was evaluated through comparisons of methods that use a reference gradient force or a combined gradient force as well as methods with and without active cells. The results show that the proposed method can accurately register lungs with large deformations and can reduce the processing time considerably.

Speech Recognition of the Korean Vowel 'ㅗ' Based on Time Domain Waveform Patterns (시간 영역 파형 패턴에 기반한 한국어 모음 'ㅗ'의 음성 인식)

  • Lee, Jae Won
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.11
    • /
    • pp.583-590
    • /
    • 2016
  • Recently, the rapidly increasing interest in IoT in almost all areas of casual human life has led to wide acceptance of speech recognition as a means of HCI. Simultaneously, the demand for speech recognition systems for mobile environments is increasing rapidly. The server-based speech recognition systems are typically fast and show high recognition rates; however, an internet connection is necessary, and complicated server computation is required since a voice is recognized by units of words that are stored in server databases. In this paper, we present a novel method for recognizing the Korean vowel 'ㅗ', as a part of a phoneme based Korean speech recognition system. The proposed method involves analyses of waveform patterns in the time domain instead of the frequency domain, with consequent reduction in computational cost. Elementary algorithms for detecting typical waveform patterns of 'ㅗ' are presented and combined to make final decisions. The experimental results show that the proposed method can achieve 89.9% recognition accuracy.

Modeling and Simulation Study of Multipath Ghosts (다중 경로 고스트의 모델링 및 시뮬레이션 연구)

  • Kwon, Sung-Jae
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.675-686
    • /
    • 2005
  • This paper proposes a new method of mathematically modeling and computer simulating television ghosts wherein television signals that have undergone multipath fading are generated without using approximations by considering the attenuation, time delay, phase, and timing jitter between consecutive frames. Conventional methods used polynomial interpolation or complex arithmetic to take into account the ghost phase, but our method uses only real arithmetic by employing the Hilbert transform and also reduces the computation time using the FFT (fast Fourier transform) algorithm. Furthermore, it is also possible to observe the transmit waveforms in both RF and IF ranges. Various ghost patterns generated in software provide for essential data required for the development of ghost canceling algorithms, and are deemed to be very useful in analyzing the constituent blocks of the transmitter and receiver chain in television broadcasting. The development of ghost cancelers needs to be preceded by the task of mathematically modeling ghosts and their extensive computer simulations.

  • PDF

A Fast Motion Estimation Algorithm with Adjustable Searching Area (적응 탐색 영역을 가지는 고속 움직임 추정 알고리즘)

  • Jeong, Seong-Gyu;Jo, Gyeong-Rok;Jeong, Cha-Geun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.8
    • /
    • pp.966-974
    • /
    • 1999
  • 완전 탐색 블록 정합 알고리즘(FBMA)은 다양한 움직임 추정 알고리즘 중 최상의 움직임 추정을 할 수 있으나, 방대한 계산량이 실시간 처리의 적용에 장애 요소이다. 본 논문에서는 완전 탐색 블록 정합 알고리즘에 비해 더 낮은 계산량과 유사한 화질을 가지는 새로운 고속 움직임 추정 알고리즘을 제안한다. 제안한 방법에서는 공간적인 상관성을 이용함으로써 적절한 탐색 영역의 크기를 예측할 수 있다. 현재 블록의 움직임 추정을 위하여 이웃 블록이 가지고 있는 움직임과 탐색 영역의 크기를 이용하여 현재 블록의 탐색 영역을 적응적으로 변화시키는 방법이다. 이 예측값으로 현재 블록의 탐색 영역 크기를 결정한 후, FBMA와 같이 이 영역 안의 모든 화소점들에 대하여 현재 블록을 정합하여 움직임 벡터를 추정한다. 컴퓨터 모의 실험 결과 계산량 측면에서 제안 방법이 완전 탐색 블록 정합 알고리즘보다 50%정도 감소하였으며, PSNR 측면에서는 0.08dB에서 1.29dB 정도 감소하는 좋은 결과를 얻었다.Abstract Full search block-matching algorithm (FBMA) was shown to be able to produce the best motion compensated images among various motion estimation algorithms. However, huge computational load inhibits its applicability in real applications. A new motion estimation algorithm with lower computational complexity and good image quality when compared to the FBMA will be presented in this paper. In the proposed method, The appropriate search area can be predicted by using the temporal correlation between neighbouring blocks. For motion estimation of the current block, it is the method changing adjustably search area of current block by using motion and search area size of the neighbouring block. After deciding search area size of the current block with this predicted value, we estimate motion vector that matching current block like the FBMA for every pixel in this area. By the computer simulation the computation amount of the proposed method can be greatly decreased about 50% than that of the FBMA and the good result of the PSNR can be attained.

MMAD Computation for Fast Diamond-Search Algorithm (고속 다이아몬드 탐색 알고리즘을 위한 MMAD 연산법)

  • 서은주;김동우;한재혁;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.5
    • /
    • pp.406-413
    • /
    • 2001
  • Ordinary high-speed block matching algorithms have a disadvantage that they need to get MAD (Mean Absolute Distance) as many as the number of search points due to comparing the MAD between the current frame's search block and the reference frame's search block. To solve such disadvantage of high-speed block matching algorithm, the proposed high-speed DS algorithm employs a MMAD calculation method using a specific characteristic that neighboring pixels have almost same values. In this thesis, we can get rid of unnecessary MAD calculation between the search point block by the new calculation method which uses the previously calculated MAD as the current search point and by breaking from the established MAD calculation method which calculates the MAD of a new search point by each search stage. Comparing with the established high-speed block matching algorithm, this new calculation's estimated movement error was shown as similar, and th total calculation amount decreased by $2FN^2Ep$.

  • PDF

Real-time Volume Rendering using Point-Primitive (포인트 프리미티브를 이용한 실시간 볼륨 렌더링 기법)

  • Kang, Dong-Soo;Shin, Byeong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1229-1237
    • /
    • 2011
  • The volume ray-casting method is one of the direct volume rendering methods that produces high-quality images as well as manipulates semi-transparent object. Although the volume ray-casting method produces high-quality image by sampling in the region of interest, its rendering speed is slow since the color acquisition process is complicated for repetitive memory reference and accumulation of sample values. Recently, the GPU-based acceleration techniques are introduced. However, they require pre-processing or additional memory. In this paper, we propose efficient point-primitive based method to overcome complicated computation of GPU ray-casting. It presents semi-transparent objects, however it does not require preprocessing and additional memory. Our method is fast since it generates point-primitives from volume dataset during sampling process and it projects the primitives onto the image plane. Also, our method can easily cope with OTF change because we can add or delete point-primitive in real-time.

Single-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation for Simple and Low Cost Stand-Alone Renewable Energy Utilizations Part II : Simulation and Experimental Results

  • Ahmed, Tarek;Noro, Osamu;Soshin, Koji;Sato, Shinji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.27-34
    • /
    • 2003
  • In this paper, the power conditioner composed of the stand-alone single-phase squirrel cage rotor type self-excited induction generator (SEIG) driven by prime movers such as a wind turbine and a micro gas turbine (MGT) is presented by using the steady-state circuit analysis based on the two nodal admittance approaches using the per-unit frequency in addition to a new state variable defined by the per-unit slip frequency along with its performance evaluations for the stand-alone energy utilizations. The stande-alone single-phase SEIG operating performances in unregulated voltage control loop are then evaluated on line under the conditions of the speed change transients of the prime mover and the stand-alone electrical passive load power variations with the simple theoretical analysis and the efficient computation processing procedures described in the part I of this paper. In addition, a feasuible PI controlled feedback closed-loop voltage regulation scheme of the stande-alone single-phase SEIG is designed on the basis of the static VAR compensate. (SVC) and discussed in experiment for the promising stand-alone power conditioner. The experimental operating performance results are illustrated and give good agreements with the simulation ones. The simulation and experimental results of the stand-alone single-phase SEIG with the simple SVC controller for its stabilized voltage regulation prove the practical effectiveness of the additional SVC control loop scheme including the PI controller with fast response characteristics and steady-sate performance improvements.

Single-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation for Simple and Low Cost Stand-Alone Renewable Energy Utilizations Part I : Analytical Study

  • Ahmed, Tarek;Noro, Osamu;Soshin, Koji;Sato, Shinji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.17-26
    • /
    • 2003
  • In this paper, the comparative steady-state operating performance analysis algorithms of the stand-alone single-phase self-excited induction generator (SEIG) is presented on the basis of the two nodal admittance approaches using the per-unit frequency in addition to a new state variable de-fined by the per-unit slip frequency. The main significant features of the proposed operating circuit analysis with the per-unit slip frequency as a state variable are that the fast effective solution could be achieved with the simple mathematical computation effort. The operating performance results in the simulation of the single-phase SEIG evaluated by using the per-unit slip frequency state variable are compared with those obtained by using the per-unit frequency state variable. The comparative operating performance results provide the close agreements between two steady-state analysis performance algorithms based on the electro-mechanical equivalent circuit of the single-phase SEIG. In addition to these, the single-phase static VAR compensator; SVC composed of the thyristor controlled reactor; TCR in parallel with the fixed excitation capacitor; FC and the thyristor switched capacitor; TSC is ap-plied to regulate the generated terminal voltage of the single-phase SEIG loaded by a variable inductive passive load. The fixed gain PI controller is employed to adjust the equivalent variable excitation capacitor capacitance of the single-phase SVC.

Parallelism point selection in nested parallelism situations with focus on the bandwidth selection problem (평활량 선택문제 측면에서 본 중첩병렬화 상황에서 병렬처리 포인트선택)

  • Cho, Gayoung;Noh, Hohsuk
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.3
    • /
    • pp.383-396
    • /
    • 2018
  • Various parallel processing R packages are used for fast processing and the analysis of big data. Parallel processing is used when the work can be decomposed into tasks that are non-interdependent. In some cases, each task decomposed for parallel processing can also be decomposed into non-interdependent subtasks. We have to choose whether to parallelize the decomposed tasks in the first step or to parallelize the subtasks in the second step when facing nested parallelism situations. This choice has a significant impact on the speed of computation; consequently, it is important to understand the nature of the work and decide where to do the parallel processing. In this paper, we provide an idea of how to apply parallel computing effectively to problems by illustrating how to select a parallelism point for the bandwidth selection of nonparametric regression.