• Title/Summary/Keyword: Fast Computation

Search Result 750, Processing Time 0.032 seconds

Secure Multiplication Method against Side Channel Attack on ARM Cortex-M3 (ARM Cortex-M3 상에서 부채널 공격에 강인한 곱셈 연산 구현)

  • Seo, Hwajeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.4
    • /
    • pp.943-949
    • /
    • 2017
  • Cryptography implementation over lightweight Internet of Things (IoT) device needs to provide an accurate and fast execution for high service availability. However, adversaries can extract the secret information from the lightweight device by analyzing the unique features of computation in the device. In particular, modern ARM Cortex-M3 processors perform the multiplication in different execution timings when the input values are varied. In this paper, we analyze previous multiplication methods over ARM Cortex-M3 and provide optimized techniques to accelerate the performance. The proposed method successfully accelerates the performance by up-to 28.4% than previous works.

Logic circuit design for high-speed computing of dynamic response in real-time hybrid simulation using FPGA-based system

  • Igarashi, Akira
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1131-1150
    • /
    • 2014
  • One of the issues in extending the range of applicable problems of real-time hybrid simulation is the computation speed of the simulator when large-scale computational models with a large number of DOF are used. In this study, functionality of real-time dynamic simulation of MDOF systems is achieved by creating a logic circuit that performs the step-by-step numerical time integration of the equations of motion of the system. The designed logic circuit can be implemented to an FPGA-based system; FPGA (Field Programmable Gate Array) allows large-scale parallel computing by implementing a number of arithmetic operators within the device. The operator splitting method is used as the numerical time integration scheme. The logic circuit consists of blocks of circuits that perform numerical arithmetic operations that appear in the integration scheme, including addition and multiplication of floating-point numbers, registers to store the intermediate data, and data busses connecting these elements to transmit various information including the floating-point numerical data among them. Case study on several types of linear and nonlinear MDOF system models shows that use of resource sharing in logic synthesis is crucial for effective application of FPGA to real-time dynamic simulation of structural response with time step interval of 1 ms.

Shape Reconstruction from Large Amount of Point Data using Repetitive Domain Decomposition Method (반복적 영역분할법을 이용한 대용량의 점데이터로부터의 형상 재구성)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.93-102
    • /
    • 2006
  • In this study an advanced domain decomposition method is suggested in order to construct surface models from very large amount of points. In this method the spatial domain of interest that is occupied by the input set of points is divided in repetitive manner. First, the space is divided into smaller domains where the problem can be solved independently. Then each subdomain is again divided into much smaller domains where the problem can be solved locally. These local solutions of subdivided domains are blended together to obtain a solution of each subdomain using partition of unity function. Then the solutions of subdomains are merged together in order to construct whole surface model. The suggested methods are conceptually very simple and easy to implement. Since RDDM(Repetitive Domain Decomposition Method) is effective in the computation time and memory consumption, the present study is capable of providing a fast and accurate reconstructions of complex shapes from large amount of point data containing millions of points. The effectiveness and validity of the suggested methods are demonstrated by performing numerical experiments for the various types of point data.

Microprocessor Based Permanent Magnet Synchronous Motor Drive (마이크로 프로세서에 의한 영구자석동기 전동기의 구동)

  • Yoon, Byung-Do
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.12
    • /
    • pp.541-554
    • /
    • 1986
  • This paper presents the results of driving performance analysis of permanent magnet synchronous motor using a microprocessor based control system. The system consists of three phase power transistor inverters, three phase controlled rectifier, three central processing units, and sensors. The three CPUs are, respectively, used to generate PWM control signals for the inverter generating three phase sine wave, to generate the gate control signals for firing the converter, and to supervise other two CPUs. The supervisor is used to compute PI control algtorithm to three phase reference sine wave for the inverter. It is also used to maintain a constant voltage frequency ratio for the converter operating as a constant torque controller. The inverter CPU retrieves precomputed PWM patterns from look up tables because of computation speed limitations found in almost available microprocessors. The converter CPU also retrieves precomputed gate control patterns from another look-up tables. For protecting the control ststem from any damage by extraordinary over currents, the supervisor receives the data from current sensor, CT, and break down the CB to isolate the circuits from source. A resolver has a good performance characteristics of overall speed range, especially on low speed range. Therefor the speed control accuracy is impoved. The microprocessor based PM synchronous motor control system, thus, has many advantages such as constant torque characteristics, improvement of wave, limitation on extraordinary over currents, improvement of speed control accuracy, and fast response speed control using multi-CPU and look-up tables.

  • PDF

The Analysis of Dual Beam Offser-fed Dish Antenna (이중빔 옵셋안테나 해석)

  • 박경환;이행선;양군백;강동균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1247-1257
    • /
    • 2000
  • Offset-fed dish antennas are considered. Offset-fed dish antennas are widely used for DBS reception, the problem of offset-fed dish antenna has, however, received little attention because of its complicated and asymmetric geometry. A Fourier-transform technique and Physical Optics are employed to express the fields radiated from offset-fed reflector and feed horn aperture. The simultaneous equations are solved to obtain a solution in a fast convergent series, thus facilitating the numerical computation. For given parameters such as diameter of reflector, focal length, offset height of reflector center, exact solutions are derived. Since offset-fed dish antenna has an application as multi-beam antenna using multiple feed, a brief feasablity of dual beam antenna for Korea-SAT (116$^{\circ}$E, EIRP 59 dBW) and Orion-SAT (139$^{\circ}$E, EIRP 54 dBW) is given in Conclusion.

  • PDF

Design and Hardware Integration of Humanoid Robot Platform KHR-2 (인간형 로봇 플랫폼 KHR-2 의 설계 및 하드웨어 집성)

  • Kim, Jung-Yup;Park, Ill-Woo;Oh, Jun-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.579-584
    • /
    • 2004
  • In this paper, we present the mechanical, electrical system design and system integration of controllers including sensory devices of the humanoid, KHR-2 (KAIST Humanoid Robot - 2). We have developed KHR-2 since 2003. Total number of DOF of KHR-2 is 41. Each arm including a hand has 11 DOF and each leg has 6 DOF. Head and trunk also has 6 DOF and 1 DOF respectively. In head, two CCD cameras are used for eye. To control all axes efficiently, distributed control architecture is used to reduce computation burden of main controller and to expand devices easily. So we developed the sub-controller as a servo motor controller and a sensor interfacing devices using microprocessor. The main controller attached its back communicates with sub-controllers in real-time by CAN (Controller Area Network) protocol. We used Windows XP as its OS (Operation System) for fast development of main control program and easy extension of peripheral devices. And RTX HAL extension commercial software is used to realize the real-time control in Windows XP environment.

  • PDF

Visibility detection approach to road scene foggy images

  • Guo, Fan;Peng, Hui;Tang, Jin;Zou, Beiji;Tang, Chenggong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4419-4441
    • /
    • 2016
  • A cause of vehicle accidents is the reduced visibility due to bad weather conditions such as fog. Therefore, an onboard vision system should take visibility detection into account. In this paper, we propose a simple and effective approach for measuring the visibility distance using a single camera placed onboard a moving vehicle. The proposed algorithm is controlled by a few parameters and mainly includes camera parameter estimation, region of interest (ROI) estimation and visibility computation. Thanks to the ROI extraction, the position of the inflection point may be measured in practice. Thus, combined with the estimated camera parameters, the visibility distance of the input foggy image can be computed with a single camera and just the presence of road and sky in the scene. To assess the accuracy of the proposed approach, a reference target based visibility detection method is also introduced. The comparative study and quantitative evaluation show that the proposed method can obtain good visibility detection results with relatively fast speed.

Improved Model Predictive Control Method for Cascaded H-Bridge Multilevel Inverters (Cascaded H-Bridge 멀티레벨 인버터를 위한 개선된 모델 예측 제어 방법)

  • Roh, Chan;Kim, Jae-Chang;Kwak, Sangshin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.846-853
    • /
    • 2018
  • In this paper, an improved model predictive control (MPC) method is proposed, which reduces the amount of calculations caused by the increased number of candidate voltage vectors with the increased voltage level in multi-level inverters. When the conventional MPC method is used for multi-level inverters, all candidate voltage vectors are considered to predict the next-step current value. However, in the case that the sampling time is short, increased voltage level makes it difficult to consider the all candidate voltage vectors. In this paper, the improved MPC method which can get a fast transient response is proposed with a small amount of the computation by adding new candidate voltage vectors that are set to find the optimal vector. As a result, the proposed method shows faster transient response than the method that considers the adjacent vectors and reduces the computational burden compared to the method that considers the whole voltage vector. the performance of the proposed method is verified through simulations and experiments.

Motion-based ROI Extraction with a Standard Angle-of-View from High Resolution Fisheye Image (고해상도 어안렌즈 영상에서 움직임기반의 표준 화각 ROI 검출기법)

  • Ryu, Ar-Chim;Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.395-401
    • /
    • 2020
  • In this paper, a motion-based ROI extraction algorithm from a high resolution fisheye image is proposed for multi-view monitoring systems. Lately fisheye cameras are widely used because of the wide angle-of-view and they basically provide a lens correction functionality as well as various viewing modes. However, since the distortion-free angle of conventional algorithms is quite narrow due to the severe distortion ratio, there are lots of unintentional dead areas and they require much computation time in finding undistorted coordinates. Thus, the proposed algorithm adopts an image decimation and a motion detection methods, that can extract the undistorted ROI image with a standard angle-of-view for the fast and intelligent surveillance system. In addition, a mesh-type ROI is presented to reduce the lens correction time, so that this independent ROI scheme can parallelize and maximize the processor's utilization.

The Optimized Design of a NPC Three-Level Inverter Forced-Air Cooling System Based on Dynamic Power-loss Calculations of the Maximum Power-Loss Range

  • Xu, Shi-Zhou;He, Feng-You
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1598-1611
    • /
    • 2016
  • In some special occasions with strict size requirements, such as mine hoists, improving the design accuracy of the forced-air cooling systems of NPC three-level inverters is a key technology for improving the power density and decreasing the volume. First, a fast power-loss calculation method was brought. Its calculation principle introduced in detail, and the computation formulas were deduced. Secondly, the average and dynamic power losses of a 1MW mine hoist acting as the research target were analyzed, and a forced-air cooling system model based on a series of theoretical analyses was designed with the average power loss as a heat source. The simulation analyses proves the accuracy and effectiveness of this cooling system during the unit lifting period. Finally, according to an analysis of the periodic working condition, the maximum power-loss range of a NPC three-level inverter under multi cycle operation was obtained and its dynamic power loss was taken into the optimized cooling system model as a heat source to solve the power device damage caused by instantaneous heat accumulation. The effectiveness and feasibility of the optimization design based on the dynamic power loss calculation of the maximum power-loss range was proved by simulation and experimental results.