• Title/Summary/Keyword: Fast Computation

Search Result 750, Processing Time 0.03 seconds

An Efficient Mode Decision Method for Fast Intra Prediction of SVC (SVC에서 빠른 인트라 예측을 위한 효율적인 모드 결정 방법)

  • Cho, Mi-Sook;Kang, Jin-Mi;Chung, Ki-Dong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.4
    • /
    • pp.280-283
    • /
    • 2009
  • To improve coding performance of scalable video coding which is an emerging video coding standard as an extension of H.264/AVC, SVC uses not only intra prediction and inter prediction but inter-layer prediction. This causes a problem that computational complexity is increased. In this paper, we propose an efficient intra prediction mode decision method in spatial enhancement layer to reduce the computational complexity. The proposed method selects Inra_BL mode using RD cost of Intra_BL in advance. After that, intra mode is decided by only comparing DC modes. Experimental results show that the proposed method reduces 59% of the computation complexity of intra prediction coding, while the degradation in video quality is negligible.

Fast Scene Understanding in Urban Environments for an Autonomous Vehicle equipped with 2D Laser Scanners (무인 자동차의 2차원 레이저 거리 센서를 이용한 도시 환경에서의 빠른 주변 환경 인식 방법)

  • Ahn, Seung-Uk;Choe, Yun-Geun;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.92-100
    • /
    • 2012
  • A map of complex environment can be generated using a robot carrying sensors. However, representation of environments directly using the integration of sensor data tells only spatial existence. In order to execute high-level applications, robots need semantic knowledge of the environments. This research investigates the design of a system for recognizing objects in 3D point clouds of urban environments. The proposed system is decomposed into five steps: sequential LIDAR scan, point classification, ground detection and elimination, segmentation, and object classification. This method could classify the various objects in urban environment, such as cars, trees, buildings, posts, etc. The simple methods minimizing time-consuming process are developed to guarantee real-time performance and to perform data classification on-the-fly as data is being acquired. To evaluate performance of the proposed methods, computation time and recognition rate are analyzed. Experimental results demonstrate that the proposed algorithm has efficiency in fast understanding the semantic knowledge of a dynamic urban environment.

Fast Motion Estimation Algorithm Using Limited Sub-blocks (제한된 서브블록을 이용한 고속 움직임 추정 알고리즘)

  • Kim Seong-Hee;Oh Jeong-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3C
    • /
    • pp.258-263
    • /
    • 2006
  • Each pixel in a matching block does not equally contribute to block matching and the matching error is greatly affected by image complexity. On the basis of the facts, this paper proposes a fast motion estimation algorithm using some sub-blocks selected by the image complexity. The proposed algorithm divides a matching block into 16 sub-blocks, computes the image complexity in every sub-block, executes partial block matching using some sub-blocks with large complexity, and detects a motion vector. The simulation results show that the proposed algorithm brings about negligible image degradation, but can reduce a large amount of computation in comparison with conventional algorithms.

Local Obstacle Avoidance Method of Mobile Robots Using LASER scanning sensor (레이저 스캐닝 센서를 이용한 이동 로봇의 지역 장애물 회피 방법)

  • Kim, Sung Cheol;Kang, Won Chan;Kim, Dong Ok;Seo, Dong Jin;Ko, Nak Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.155-160
    • /
    • 2002
  • This paper focuses on the problem of local obstacle avoidance of mobile robots. To solve this problem, the safety direction section search algorithm is suggested. This concept is mainly composed with non-collision section and collision section from the detecting area of laser scanning sensor. Then, we will search for the most suitable direction in these sections. The proposed local motion planning method is simple and requires less computation than others. An environment model is developed using the vector space concept to determine robot motion direction taking the target direction, obstacle configuration, and robot trajectory into account. Since the motion command is obtained considering motion dynamics, it results in smooth and fast as well as safe movement. Using the mobile base, the proposed obstacle avoidance method is tested, especially in the environment with pillar, wall and some doors. Also, the proposed autonomous motion planning and control algorithm are tested extensively. The experimental results show the proposed method yields safe and stable robot motion through the motion speed is not so fast.

A Parallel-Architecture Processor Design for the Fast Multiplication of Homogeneous Transformation Matrices (Homogeneous Transformation Matrix의 곱셈을 위한 병렬구조 프로세서의 설계)

  • Kwon Do-All;Chung Tae-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.12
    • /
    • pp.723-731
    • /
    • 2005
  • The $4{\times}4$ homogeneous transformation matrix is a compact representation of orientation and position of an object in robotics and computer graphics. A coordinate transformation is accomplished through the successive multiplications of homogeneous matrices, each of which represents the orientation and position of each corresponding link. Thus, for real time control applications in robotics or animation in computer graphics, the fast multiplication of homogeneous matrices is quite demanding. In this paper, a parallel-architecture vector processor is designed for this purpose. The processor has several key features. For the accuracy of computation for real application, the operands of the processors are floating point numbers based on the IEEE Standard 754. For the parallelism and reduction of hardware redundancy, the processor takes column vectors of homogeneous matrices as multiplication unit. To further improve the throughput, the processor structure and its control is based on a pipe-lined structure. Since the designed processor can be used as a special purpose coprocessor in robotics and computer graphics, additionally to special matrix/matrix or matrix/vector multiplication, several other useful instructions for various transformation algorithms are included for wide application of the new design. The suggested instruction set will serve as standard in future processor design for Robotics and Computer Graphics. The design is verified using FPGA implementation. Also a comparative performance improvement of the proposed design is studied compared to a uni-processor approach for possibilities of its real time application.

Fast Adaptive Block Matching Algorithm using Characteristic of the Motion Vector Distribution (움직임 벡터 분포 특성을 이용한 고속 적응 블럭 정합 알고리즘)

  • Shin, Yong-Dal;Kim, Young-Choon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.63-68
    • /
    • 1998
  • We present a fast adaptive block matching algorithm using characteristic of the motion vector distribution. In the presented method, the block is classified into one of four motion categories: stationary block, quasi-stationary block, medium-motion block or high-motion block according to characteristic of the MAD(0,0) distribution for motion vector, each block estiamtes the motion vector adaptively. By the simulation, the PSNR of our algorithm is similar to NTSS method. The computation amount of the presented method decreased 30.44% ~ 40.27% more than NTSS method.

  • PDF

Implementation of the Adaptive-Neuro Controller of Industrial Robot Using DSP(TMS320C50) Chip (DSP(TMS320C50) 칩을 사용한 산업용 로봇의 적응-신경제어기의 실현)

  • 김용태;정동연;한성현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.38-47
    • /
    • 2001
  • In this paper, a new scheme of adaptive-neuro control system is presented to implement real-time control of robot manipulator using Digital Signal Processors. Digital signal processors, DSPs, are micro-processors that are particularly developed for fast numerical computations involving sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of therir prices. These features make DSPs a viable computational tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust perfor-mance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method.The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for the implementation of real-time control of robot system by the simulation and experi-ment.

  • PDF

Fast Wavelet Adaptive Algorithm Based on Variable Step Size for Adaptive Noise Canceler (Adaptive Noise Canceler에 적합한 가변 스텝 사이즈 고속 웨이블렛 적응알고리즘)

  • Lee Chae-Wook;Lee Jae-Kyun
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.8
    • /
    • pp.1051-1056
    • /
    • 2005
  • Least mean square(LMS) algorithm is one of the most popular algorithm in adaptive signal processing because of the simplicity and the small computation. But the convergence speed of time domain adaptive algorithm is slow when the spread width of eigen values is wide. Moreover we have to choose the step size well for convergency in this paper, we use adaptive algorithm of wavelet transform. And we propose a new wavelet based adaptive algorithm of wavelet transform. And we propose a new wavelet based adaptive algorithm with variable step size, which Is linear to absolute value of error signal. We applied this algorithm to adaptive noise canceler. Simulation results are presented to compare the performance of the proposed algorithm with the usual algorithms.

  • PDF

A FAST INTRA PREDICTION MODE SELECTION METHOD IN H.264/AVC SCALABLE VIDEO CODING

  • Park, Sung-Jae;Lee, Yeo-Song;Sohn, Chae-Bong;Jeong, S.Y.;Chung, Kwang-Sue;Park, Ho-Chong;Ahn, Chang-Bum;Oh, Seoung-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.170-173
    • /
    • 2009
  • In this paper, we propose a fast intra prediction mode selection method in Scalable Video Coding(SVC) which is an emerging video coding standard as an extension of H.264/Advanced Video Coding(H.264/AVC). The proposed method decides a candidate intra prediction mode based on the characteristic of macroblock smoothness. Statistical analysis is applied to computing that smoothness in spatial enhancement layer. We also propose an early termination scheme for Intra_BL mode decision where the RD cost value of Intra_BL is utilized. Compared with JSVM software, our scheme can reduce about 55% of the computation complexity of intra prediction on average, while the performance degradation is negligible; For low QP values, the average PSNR loss is very negligible, equivalently the bit rate increases by 0.01%. For high QP values, the average PSNR loss is less than 0.01dB, which equals to 0.25% increase in bitrate on average.

  • PDF

Integer Programming Model and Heuristic on the Guided Scrambling Encoding for Holographic Data Storage (홀로그래픽 저장장치에 대한 GS 인코딩의 정수계획법 모형 및 휴리스틱)

  • Park, Taehyung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.656-661
    • /
    • 2013
  • In Guided Scrambling (GS) encoding for the holographic storage, after scrambling augmented source word into codeword, the best codeword satisfying modulation constraint is determined. Modulation constraints considered in this paper are strength which is the minimum number of transition between '0' and '1' in each row and column of codeword array and the symbol balancedness of codeword array. In this paper, we show that GS encoding procedure can be formulated as an integer programming model and develop a fast neighborhood search heuristic for fast computation of control bits. In the simulation, we compared the performance of heuristic algorithm with the integer programming model for various array and control bit size combinations.