• Title/Summary/Keyword: Fast Computation

Search Result 750, Processing Time 0.035 seconds

Fast Computation Algorithm of Fresnel Holograms Using Recursive Addition Method (반복 가산 기법을 이용한 Fresnel 홀로그램의 고속 계산 알고리듬)

  • Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5C
    • /
    • pp.386-394
    • /
    • 2008
  • For digital holographic video system, it is important to generate digital hologram as fast as possible. This paper proposed a fixed-point method and fast generation method that can calculate the Fresnel hologram using operation of whole-coordinate recursive addition. To compute the digital hologram, 3D object is assumed to be a collection of depth-map point generated using a PC. Our algorithm can compute a phase on a hologram by recursive addition with fixed-point format at a high speed. When we operated this algorithm on a personal computer, we could maximally compute digital hologram about 70% faster than conventional method and about 30% faster than of [3]'s method.

A Fast Capacitance Extraction Algorithm for Multiple 3-Dimensional Conductors with Dielectrics using Adaptive Triangular Mesh (적응요소 MLFMA를 이용한 유전체층을 가진 3차원 도체의 정전용량계산)

  • Kim, Han;Ahn, Chang-Hoi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.80-86
    • /
    • 2002
  • This paper describes to extend the MLFMA(Multi-Level Fast Multipole Algorithm) for three-dimensional capacitance computation in the case of conductors embedded in an arbitrary dielectric medium. The triangular meshes are used and refined in the area which has heavy charge density. This technique is applied to the capacitance extraction of three-dimensional structures with multiple dielectrics. The results show good convergence with the comparable accuracy, and this adaptive technique coupled with MLFMA is useful to reduce computing time and the number of elements with least additional computational efforts in large three dimensional problems.

Binary Image Based Fast DoG Filter Using Zero-Dimensional Convolution and State Machine LUTs

  • Lee, Seung-Jun;Lee, Kye-Shin;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.131-138
    • /
    • 2018
  • This work describes a binary image based fast Difference of Gaussian (DoG) filter using zero-dimensional (0-d) convolution and state machine look up tables (LUTs) for image and video stitching hardware platforms. The proposed approach for using binary images to obtain DoG filtering can significantly reduce the data size compared to conventional gray scale based DoG filters, yet binary images still preserve the key features of the image such as contours, edges, and corners. Furthermore, the binary image based DoG filtering can be realized with zero-dimensional convolution and state machine LUTs which eliminates the major portion of the adder and multiplier blocks that are generally used in conventional DoG filter hardware engines. This enables fast computation time along with the data size reduction which can lead to compact and low power image and video stitching hardware blocks. The proposed DoG filter using binary images has been implemented with a FPGA (Altera DE2-115), and the results have been verified.

Fast Analysis of Film Thickness in Spectroscopic Reflectometry using Direct Phase Extraction

  • Kim, Kwangrak;Kwon, Soonyang;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • A method for analysis of thin film thickness in spectroscopic reflectometry is proposed. In spectroscopic reflectometry, there has been a trade-off between accuracy and computation speed using the conventional analysis algorithms. The trade-off originated from the nonlinearity of spectral reflectance with respect to film thickness. In this paper, the spectral phase is extracted from spectral reflectance, and the thickness of the film can be calculated by linear equations. By using the proposed method, film thickness can be measured very fast with high accuracy. The simulation result shows that the film thickness can be acquired with high accuracy. In the simulation, analysis error is lower than 0.01% in the thickness range from 100 nm to 4 um. The experiments also show good accuracy. Maximum error is under $40{\AA}$ in the thickness range $3,000-20,000{\AA}$. The experiments present that the proposed method is very fast. It takes only 2.6 s for volumetric thickness analysis of 640*480 pixels. The study suggests that the method can be a useful tool for the volumetric thickness measurement in display and semiconductor industries.

Modeling and Analysis of Radar Target Signatures in the VHF-Band Using Fast Chirplet Decomposition (고속 Chirplet 분리기법을 이용한 VHF 대역 레이더 표적신호 모델링 및 해석)

  • Park, Ji-hoon;Kim, Si-ho;Chae, Dae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.475-483
    • /
    • 2019
  • Although radar target signatures(RTS), such as range profiles have played an important role for target recognition in the X-band radar, they would be less effective when a target is designed to have low radar cross section(RCS). Recently, a number of research groups have conducted the studies on the RTS in the VHF-band where such targets can be better detected than in the X-band. However, there is a lack of work carried out on the mathematical description of the VHF-band RTS. In this paper, chirplet decomposition is employed for modeling of the VHF-band RTS and its performance is compared with that of existing scattering center model generally used for the X-band. In addition, the discriminative signal analysis is performed by chirplet parameterization of range profiles from in an ISAR image. Because the chirplet decomposition takes long computation time, its fast form is further proposed for enhanced practicality.

IMT: A Memory-Efficient and Fast Updatable IP Lookup Architecture Using an Indexed Multibit Trie

  • Kim, Junghwan;Ko, Myeong-Cheol;Shin, Moon Sun;Kim, Jinsoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1922-1940
    • /
    • 2019
  • IP address lookup is a function to determine nexthop for a given destination IP address. It takes an important role in modern routers because of its computation time and increasing Internet traffic. TCAM-based IP lookup approaches can exploit the capability of parallel searching but have a limitation of its size due to latency, power consumption, updatability, and cost. On the other hand, multibit trie-based approaches use SRAM which has relatively low power consumption and cost. They reduce the number of memory accesses required for each lookup, but it still needs several accesses. Moreover, the memory efficiency and updatability are proportional to the number of memory accesses. In this paper, we propose a novel architecture using an Indexed Multibit Trie (IMT) which is based on combined TCAM and SRAM. In the proposed architecture, each lookup takes at most two memory accesses. We present how the IMT is constructed so as to be memory-efficient and fast updatable. Experiment results with real-world forwarding tables show that our scheme achieves good memory efficiency as well as fast updatability.

Neutronics modelling of control rod compensation operation in small modular fast reactor using OpenMC

  • Guo, Hui;Peng, Xingjie;Wu, Yiwei;Jin, Xin;Feng, Kuaiyuan;Gu, Hanyang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.803-810
    • /
    • 2022
  • The small modular liquid-metal fast reactor (SMFR) is an important component of advanced nuclear systems. SMFRs exhibit relatively low breeding capability and constraint space for control rod installation. Consequently, control rods are deeply inserted at beginning and are withdrawn gradually to compensate for large burnup reactivity loss in a long lifetime. This paper is committed to investigating the impact of control rod compensation operation on core neutronics characteristics. This paper presents a whole core fine depletion model of long lifetime SMFR using OpenMC and the influence of depletion chains is verified. Three control rod position schemes to simulate the compensation process are compared. The results show that the fine simulation of the control rod compensation process impacts significantly the fuel burnup distribution and absorber consumption. A control rod equivalent position scheme proposed in this work is an optimal option in the trade-off between computation time and accuracy. The control position is crucial for accurate power distribution and void feedback coefficients in SMFRs. The results in this paper also show that the pin level power distribution is important due to the heterogeneous distribution in SMFRs. The fuel burnup distribution at the end of core life impacts the worth of control rods.

Low Computational FFT-based Fine Acquisition Technique for BOC Signals

  • Kim, Jeong-Hoon;Kim, Binhee;Kong, Seung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • Fast Fourier transform (FFT)-based parallel acquisition techniques with reduced computational complexity have been widely used for the acquisition of binary phase shift keying (BPSK) global positioning system (GPS) signals. In this paper, we propose a low computational FFT-based fine acquisition technique, for binary offset carrier (BOC) modulated BPSK signals, that depending on the subcarrier-to-code chip rate ratio (SCR) selectively utilizes the computationally efficient frequency-domain realization of the BPSK-like technique and two-dimensional compressed correlator (BOC-TDCC) technique in the first stage in order to achieve a fast coarse acquisition and accomplishes a fine acquisition in the second stage. It is analyzed and demonstrated that the proposed technique requires much smaller mean fine acquisition computation (MFAC) than the conventional FFT-based BOC acquisition techniques. The proposed technique is one of the first techniques that achieves a fast FFT-based fine acquisition of BOC signals with a slight loss of detection probability. Therefore, the proposed technique is beneficial for the receivers to make a quick position fix when there are plenty of strong (i.e., line-of-sight) GNSS satellites to be searched.

Fast Motion Estimation Algorithm using Selection of Candidates and Stability of Optimal Candidates (후보 선별과 최적후보 안정성을 이용한 고속 움직임 예측 알고리즘)

  • Kim, Jong Nam
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.628-635
    • /
    • 2018
  • In this paper, we propose a fast motion estimation algorithm which is important in video encoding. So many fast motion estimation algorithms have been published for improving prediction quality and computational reduction. In the paper, we propose an algorithm that reduces unnecessary computation, while almost keeping prediction quality compared with the full search algorithm. The proposed algorithm calculates the sum of partial block matching error for each candidate, selects the candidates for the next step, compares the stability of optimal candidates with minimum error, and finds optimal motion vectors by determining the progress of the next step. By doing that, we can find the minimum error point as soon as possible and obtain fast computational speed by reducing unnecessary computations. Additionally, the proposed algorithm can be used with conventional fast motion estimation algorithms and prove it in the experimental results.

Motion-Estimated Active Rays-Based Fast Moving Object Tracking (움직임 추정 능동 방사선 기반 고속 객체 추적)

  • Ra Jeong-Jung;Seo Kyung-Seok;Choi Hung-Moon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.15-22
    • /
    • 2005
  • This paper proposed a object tracking algorithm which can track contour of fast moving object through motion estimation. Since the proposed tracking algorithm is based on the radial representation, the motion estimation of object can be accomplished at the center of object with the low computation complexity. The motion estimation of object makes it possible to track object which move fast more than distance from center point to contour point for each frame. In addition, by introducing both gradient image and difference image into energy functions in the process of energy convergence, object tracking is more robust to the complex background. The results of experiment show that the proposed algorithm can track fast moving object in real-time and is robust under the complex background.