• Title/Summary/Keyword: FasL

Search Result 429, Processing Time 0.026 seconds

Additive biocomponents from catfish by-products enhance the growth of shrimp Litopenaeus vannamei

  • Pham Viet Nam;Tran Vy Hich;Nguyen Van Hoa;Khuong V. Dinh;Nguyen Cong Minh;Trang Si Trung
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.367-379
    • /
    • 2023
  • The rapid expansion of shrimp production requires a huge amount of protein sources from soybeans and wild-caught fishmeal; both are becoming a shortage. Meanwhile, catfish production and processing is a giant industry in Vietnam, which produce hundred thousand tonnes of protein- and lipid-rich by-products, annually. Using catfish by-products to gradually replace the traditional protein sources in shrimp aquaculture may bring triple benefits: 1) reducing pressure on wild fish exploitation for fishmeal, 2) reducing the environmental impacts of catfish by-products, and 3) increasing the value and sustainability of aquaculture production. In this study, we used catfish by-products to produce fish protein hydrolysate (FPH) and nano-hydroxyapatite (HA) as additives in feed for Pacific white shrimp (Litopenaeus vannamei). The supplement mixture of FPH and HA was added into the commercial diet (Charoen Pokphand Group [CP], 38% protein, and 6.5% lipid) to reach 38%, 38.5%, 40%, 43%, and 44% of the crude protein content. The survival and growth of shrimps were weekly assessed to day 55. The results showed that the shrimp growth was highest at 43% crude protein content in the feed as indicated by an increase of 124% and 112% in shrimp weight and length, respectively, compared to the commercial reference diet. No negative effects of adding the mixture of FPH and HA on the water quality were observed. Vibrio density was lower than 6.5 × 103 CFU/mL, which is the lowest Vibrio density negatively affecting the shrimp growth and development. These findings indicate that the mixture of FPH and HA are promising additive components in feed for post-larval shrimp L. vannamei diets.

Biological aspects and population dynamics of Indian mackerel (Rastrelliger kanagurta) in Barru, Makassar Strait, Indonesia

  • Andi Asni;Hasrun;Ihsan;Najamuddin
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.392-409
    • /
    • 2024
  • The present study aims to analyze the biological aspects and population dynamics of Indian mackerel in Barru waters. Data was collected in Barru for 11 months, from June 2022 to April 2023. The observed parameters of biological aspects included gonadal maturation stages (GMSs), size at first gonadal maturation, and length-weight relationship. Meanwhile, the aspects of population dynamics encompass age group, growth, mortality rate, and exploitation rate. Data analysis consisted of morphological selection of general maturation stages, Spearman-Kärber method in estimating gonadal first maturation size, Bhattacharya method in identifying age group, von Bertalanffy function through FISAT II to measure growth (L and K), Pauly Model to estimate mortality rate, Beverton & Holt Model to estimate Y/R, and virtual population analysis (VPA) analysis to estimate stock and fish yield. The results demonstrated that GMS I was observed to be dominant, followed by stages II and III. The initial gonadal maturation was estimated to be 17.98-19.28 cm (FL) for females and 17.98-19.27 cm (FL) for males. The length-weight relationship in male and female Indian mackerels indicated a positive allometric growth. The mode grouping analysis results from the fork length measurement revealed three age groups. It was also identified that the asymptotic length (L) = 29.5 cm (fork length), growth rate coefficient (K) = 0.46 per year, and theoretical age at zero length (t0) = -0.3576 per year. Total mortality (Z) = 2.67 per year, natural mortality (M) = 1.10 per year, fishing mortality (F) = 1.57 per year, and exploitation rate (E) = 0.59, the actual Y/R = 0.083 gram/recruitment, and optimal Y/R 0.03 gram/recruitment. Fishing mortality is higher than the natural mortality rate, and a high exploitation value (E > 0.5) also reflects over-exploitation. VPA analysis on fish yields and stock estimation reported a highly exploited rate between the 11.5 cm and 14.5 cm length classes and an exceeding current yield of 467.07 tons/year with a recommended yield of 233.53 tons/year to ensure population sustainability.

Hog millet (Panicum miliaceum L.)-supplemented diet ameliorates hyperlipidemia and hepatic lipid accumulation in C57BL/6J-ob/ob mice

  • Park, Mi-Young;Jang, Hwan-Hee;Kim, Jung-Bong;Yoon, Hyun-Nye;Lee, Jin-Young;Lee, Young-Min;Kim, Jae-Hyun;Park, Dong-Sik
    • Nutrition Research and Practice
    • /
    • v.5 no.6
    • /
    • pp.511-519
    • /
    • 2011
  • Dietary intake of whole grains reduces the incidence of chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer. In an earlier study, we showed that Panicum miliaceum L. extract (PME) exhibited the highest anti-lipogenic activity in 3T3-L1 cells among extracts of nine different cereal grains tested. In this study, we hypothesized that PME in the diet would lead to weight loss and augmentation of hyperlipidemia by regulating fatty acid metabolism. PME was fed to ob/ob mice at 0%, 0.5%, or 1% (w/w) for 4 weeks. After the experimental period, body weight changes, blood serum and lipid profiles, hepatic fatty acid metabolism-related gene expression, and white adipose tissue (WAT) fatty acid composition were determined. We found that the 1% PME diet, but not the 0.5%, effectively decreased body weight, liver weight, and blood triglyceride and total cholesterol levels (P < 0.05) compared to obese ob/ob mice on a normal diet. Hepatic lipogenic-related gene ($PPAR{\alpha}$, L-FABP, FAS, and SCD1) expression decreased, whereas lipolysis-related gene (CPT1) expression increased in animals fed the 1% PME diet (P < 0.05). Long chain fatty acid content and the ratio of C18:1/C18:0 fatty acids decreased significantly in adipose tissue of animals fed the 1% PME diet (P < 0.05). Serum inflammatory mediators also decreased significantly in animals fed the 1% PME diet compared to those of the ob/ob control group (P < 0.05). These results suggest that PME is useful in the chemoprevention or treatment of obesity and obesity-related disorders.

Multiple Cytotoxic Factors Involved in IL-21 Enhanced Antitumor Function of CIK Cells Signaled through STAT-3 and STAT5b Pathways

  • Rajbhandary, S.;Zhao, Ming-Feng;Zhao, Nan;Lu, Wen-Yi;Zhu, Hai-Bo;Xiao, Xia;Deng, Qi;Li, Yu-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5825-5831
    • /
    • 2013
  • Background/Objectives: Maintenance of cellular function in culture is vital for transfer and development following adoptive immunotherapy. Dual properties of IL-21 in activating T cells and reducing activation induced cell death led us to explore the mechanism of action of IL-21 enhanced proliferation and cytotoxic potential of CIK cells. Method: CIK cells cultured from PBMCs of healthy subjects were stimulated with IL-21 and cellular viability and cytotoxicity to K562 cells were measured. To elucidate the mechanism of action of IL-21, mRNA expression of cytotoxic factors was assessed by RT-PCR and protein expression of significantly important cytotoxic factors and cytokine secretion were determined through flow cytometry and ELISA. Western blotting was performed to check the involvement of the JAK/STAT pathway following stimulation. Results: We found that IL-21 did not enhance in vitro proliferation of CIK cells, but did increase the number of cells expressing the CD3+/CD56+ phenotype. Cytotoxic potential was increased with corresponding increase in perforin ($0.9831{\pm}0.1265$ to $0.7592{\pm}0.1457$), granzyme B ($0.4084{\pm}0.1589$ to $0.7319{\pm}0.1639$) and FasL ($0.4015{\pm}0.2842$ to $0.7381{\pm}0.2568$). Interferon gamma and TNF-alpha were noted to increase ($25.8{\pm}6.1ng/L$ to $56.0{\pm}2.3ng/L$; and $5.64{\pm}0.61{\mu}g/L$ to $15.14{\pm}0.93{\mu}g/L$, respectively) while no significant differences were observed in the expression of granzyme A, TNF-alpha and NKG2D, and NKG2D. We further affirmed that IL-21 signals through the STAT-3 and STAT-5b signaling pathway in the CIK cell pool. Conclusion: IL-21 enhances cytotoxic potential of CIK cells through increasing expression of perforin, granzyme B, IFN-gamma and TNF-alpha. The effect is brought about by the activation of STAT-3 and STAT-5b proteins.

Inhibitory Effect of Triticum aestivum Ethanol Extract on Lipid Accumulation in 3T3-L1 Preadipocytes (3T3-L1 세포에서 소맥엽 에탄올추출물의 지질생성 억제효과)

  • Lee, Sun-Hee;Xin, Mingjie;Luyen, Bui Thi Thuy;Cha, Ji-Yun;Im, Ji-Young;Kwon, Se-Uk;Lim, Sung-Won;Suh, Joo-Won;Kim, Young-Ho;Kim, Dae-Ki;Lee, Young-Mi
    • YAKHAK HOEJI
    • /
    • v.55 no.6
    • /
    • pp.478-484
    • /
    • 2011
  • Non-alcoholic fatty liver disease is known to be frequently associated with obesity and type 2 diabetes. We examined the effects of EtOH extracts from Triticum aestivum on lipid accumulation during the differentiation of 3T3-L1 preadipocytes to screening the candidate materials in preventing non-alcoholic fatty liver disease. The lipid level in adipocytes was determined by Oil Red O staining. The treatment of 50% ethanol, but not water and 100% ethanol extracts, from Triticum aestivum at concentration of 0.5 $mg/ml$ inhibited lipid accumulation in 3T3-L1 cells, revealing no cell toxicity. Thus, the fractions of $CH_2Cl_2$, EtOAc and BuOH were separated from 50% EtOH extract to characterize anti-adipogenic effect. The $CH_2Cl_2$ fraction at concentration of $50{\mu}g/ml$ effectively inhibited the lipid accumulation in the adipocytes compared to those of EtOAc and BuOH at concentration of $50{\mu}g/ml$. The intracellular triglyceride accumulation also was significantly reduced by treatment of $CH_2Cl_2$ fraction in concentration-dependent manner. Western blot analysis showed that the $CH_2Cl_2$ fraction attenuated the intracelluar level of fatty acid synthase(FAS) accompanied by attenuated expression of Peroxidase proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) adipogenic transcription factor. These results suggest that $CH_2Cl_2$ fraction from 50% EtOH extract of Triticum aestivum may has the potent anti-adipogenic effects by inhibiting the transactivation of $PPAR{\gamma}$.

H9 Inhibits Tumor Growth and Induces Apoptosis via Intrinsic and Extrinsic Signaling Pathway in Human Non-Small Cell Lung Cancer Xenografts

  • Kim, Min-Je;Kwon, Sae-Bom;Ham, Seung Hoon;Jeong, Eui-Suk;Choi, Yang-Kyu;Choi, Kang Duk;Hong, Jin Tae;Jung, Seung Hyun;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.648-657
    • /
    • 2015
  • H9, a novel herbal extract, demonstrated cytotoxicity in A549 non-small cell lung cancer (NSCLC) cell lines. In this study, we investigated whether H9, and/or co-treatment with an anticancer drug, pemetrexed (PEM), inhibited tumor growth in BALB/c nude mice models bearing A549 NSCLC cells. The mice were separated into groups and administered H9 and PEM for 2 weeks. Protein and mRNA levels were detected using western blotting and reverse transcription polymerase chain reaction, respectively; immunohistochemistry (IHC) was also performed on the tumor tissues. H9 and co-treatment with PEM induced the cleavage of proapoptotic factors, such as caspase-3, caspase-8, caspase-9, and poly(ADP)-ribose polymerase (PARP). Expression levels of cell-death receptors involving Fas/FasL, TNF-related apoptosisinducing ligands (TRAIL), and TRAIL receptors were increased by H9 and co-treatment with PEM. Furthermore, analysis of levels of cell-cycle modulating proteins indicated that tumor cells were arrested in the G1/S phase. In addition, the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt survival signaling pathways were inhibited by H9 and co-treatment with PEM. In conclusion, H9 and co-treatment with PEM inhibited tumor growth in BALB/c nude mice models bearing A549 NSCLC cells. These results indicate that H9 and co-treatment with PEM can be used as an anticancer therapy in NSCLC.

Inhibition of Hypoxia-induced Apoptosis in PC12 Cells by Estradiol

  • Jung, Ji-Yeon;Roh, Kwang-Hoon;Jeong, Yeon-Jin;Kim, Sun-Hun;Lee, Eun-Ju;Kim, Min-Seok;Oh, Won-Mann;Oh, Hee-Kyun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.231-238
    • /
    • 2005
  • Neuronal apoptotic events, which result in cell death, are occurred in hypoxic/ischemic conditions. Estradiol is a female sex hormone with steroid structure known to provide neuroprotection through multiple mechanisms in the central nervous system. This study was aimed to investigate the signal transduction pathway of $CoCl_2$-induced neuronal cell death and the inhibitory effects of estradiol. Administration of $CoCl_2$ decreased cell viability in both a dose- and time-dependent manner in PC12 cells. $CoCl_2$-induced cell death produced genomic DNA fragmentation and morphologic changes such as cell shrinkage and condensed nuclei. It was found that $CoCl_2$-treated cells increased the reactive oxygen species (ROS) as well as caspase-8, -9 and -3 activities. However, pretreatment with estradiol before exposure to $CoCl_2$ prevented the reduction in cell viability reduction and attenuated DNA fragmentation and morphologic changes caused by $CoCl_2$. Furthermore, the $CoCl_2$-induced increases of ROS levels and caspases activities were attenuated by estradiol. Gene expression analysis revealed that estradiol blocked the underexpression of the Bcl-2 and ameliorated the increase in the release of cytochrome c from mitochondria into cytoplasm and Fas-ligand (Fas-L) upregulated by $CoCl_2$. These results suggest that $CoCl_2$ induce apoptosis in PC12 cells through both mitochondria- and death receptor-mediated cell death pathway. Estradiol was found to have a neuroprotective effect against $CoCl_2$-induced apoptosis through the inhibition of ROS production and by modulating apoptotic effectors associated with the mitochondria- and death-dependent pathway in PC12 cells.

Induction of Apoptosis by Ethanol Extracts of Fermented Agabeans in AGS Human Gastric Carcinoma Cells (AGS 인체위암세포에서 발효된 아가콩 추출물에 의한 apoptosis 유도)

  • Kim, Sung-Ryeal;Lee, Hye-Hyeon;Kim, Min-Jeong;Seo, Min-Jeong;Hong, Su-Hyun;Choi, Yung-Hyun;Kang, Byoung-Won;Park, Jeong-Uck;Joo, Woo-Hong;Rhu, Eun-Ju;Jeong, Yong-Kee
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1872-1881
    • /
    • 2010
  • Extracts of soybeans fermented by Bacillus subtilis have a wide variety of functions, such as enhancing the body's immune function, fibrinolysis activity, anti-inflammation, anti-cancer, estrogen function and anti-infection effects. Recently, it was reported that the extracts of fermented beans exhibit strong anti-inflammatory and anti-cancer properties by suppressing the transcription of pro-inflammatory cytokine genes and induction of apoptosis, respectively. However, the mechanisms of their cytotoxicity in human gastric cancer cells are poorly understood. In the present study, we investigated the effects of ethyl alcohol extracts from fermented soybean (FS) and yellow agabean (FYA) on cell growth and apoptosis in AGS human gastric cancer cells. A treatment of FS and FYA inhibited the growth of AGS cells in a concentration-dependent manner by inducing apoptosis. FS- and FYA-induced apoptosis were associated with down-regulation of XIAP and cIAP-2, and up-regulation of pro-apoptotic Bax expression. Moreover, a treatment of FS and FYA not only triggered an increase in the levels of death receptor (DR)4, DR5, Fas and FasL, but also induced the activation of casepase-3, -8 and -9. These findings illustrate that FS and FYA may have a therapeutic potential in human gastric AGS cells and as a functional food.

A Review on Experimental Research about Anticancer Drug Combined Treatment with Herbal Medicine for Killing or Inhibiting Proliferation of Cancer cells in Korea. (항암제와 한약재의 병용투여 시 암세포 증식억제 효과에 대한 국내 실험연구 문헌고찰)

  • Lee, Ji Eun;Choi, Jin Yong;Han, Chang Woo;Choi, Jun Yong;Park, Seong Ha;Kim, So Yeon
    • Herbal Formula Science
    • /
    • v.25 no.3
    • /
    • pp.391-412
    • /
    • 2017
  • Objective : In this study, we searched the experimental research about combined treatment of anticancer drug and herbal medicine for killing or inhibiting proliferation of Cancer cells searched in OASIS and KISS. This study aimed to analyze the experimental research paper about anticancer drug combined treatment with herbal medicine. Methods : We collected the research paper including killing or inhibiting proliferation of Cancer cells in OASIS and KISS using keyword anticancer drug with herbal medicine, tumor suppressor with herbal medicine, inhibition of Cancer with herbal medicine and combined treatment with herbal medicine. Assorting by cancer cells, we analyzed experimental results cancer cell viability, anticancer drug dosage, tumor weight and survival rate. Also, we checked the effects of herbal medicine on cancer and additive effect reducing side effect of anticancer drug. Results : Total 45 studies were selected. 38 studies reported combined treatment of anticancer drug and herbal medicine was more effective than only anticancer drug. The death of cancer cells was synergistically induced by the cotreatment of anticancer drug and herb extracts. The studies suggest that the cotreatment of anticancer drug and herb extracts could reduce side effect of anticancer drug. In addition, some studies reported cotreatment mechanism like apoptotic death signal processes. In combined treatment of anticancer drug and herb extracts, The expression of Fas/Fas L, Bax, Bcl2, Caspase-3 etc.. was markedly increased in cancer cells. Conclusions : Our results suggest that anticancer drug combined treatment with herbal medicine could be efficient for killing or inhibiting proliferation of cancer cells. However, this paper had some limitation as follows: First, collected studies have been published only for korean journal. Second, results of research and effects of combined treatment are not collected objectively. To solve these problems, more objective and balanced studies should be performed.

Transcriptome Analysis of Human HaCaT Keratinicytes by Ginsenosides Rb1 and Rg1 (진세노사이드 Rb1과 Rg1에 의한 HaCaT 피부각질세포의 전사체 분석)

  • Kim, Jung Min;Cho, Won June;Yoon, Hee Seung;Bang, In Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6774-6781
    • /
    • 2014
  • This study examined the efficacy and the mechanism of action of biological response modifiers, ginsenosides Rb1 and Rg1 isolated from Panax ginseng C.A. Meyer on human keratinocytes HaCaT cell lines. A non-significant cytotoxic response was obtained in the HaCaT cell lines on treatment with various concentrations of ginsenosides Rb1 and Rg1 for different time durations. Furthermore, the global changes in the mRNA profile of HaCaT cells were investigated using DNA microarrays after stimulation with the ginsenosides Rb1 and Rg1. Ginsenosides Rb1 and Rg1 strongly increased FGF2 in HaCaT cells, and were found to be a candidate gene for antioxidant activity and elasticity. Other key candidate genes for antioxidant activity, such as FANCD2, LEPR, and FAS, also show enhanced regulation in HaCaT cells treated with ginsenoside Rb1. This study will be useful for understanding the regulatory genes involved in skin elasticity and signal transduction pathway stimulated by the ginsenoside Rb1. This paper currently focuses on the key factors regulating the interaction of anti-aging principles and skin elasticity.