• Title/Summary/Keyword: Farrowing Environment

Search Result 14, Processing Time 0.025 seconds

Auto Dispatch Device of Parturition Beginning Signal by Temperature and a Load Sensor at Ubiquitous Circumstance in Pig Industry (양돈산업에 있어서 유비쿼터스 환경에서 온도 및 하중 센서에 의한 자동 분만 알림 시스템 개발)

  • Lee, Jang-Hee;Baek, Soon-Hwa;Yon, Seung-Ho
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.139-146
    • /
    • 2009
  • This study tried to develop the system (device) that automatically notify a manager of condition just before and after farrowing to extend ubiquitous-based technology and to increase efficiency of delivery care and productivity by reducing human labor and time on standby when farrowing management is done in the difficult and hard working environment of farrowing such as night or holidays in field sand especially in pig industry. In this test, selected 10 gilts were executed timed artificial insemination and were set up each temperature sensor and load sensor to them 3 days before the estimated farrowing day and were observed the farrowing situation. This study was embodied the NESPOT-based (KT Corporation) monitoring system, the system to transmit data in real time by utilization of wireless LAN and the sensor module to apply the ubiquitous environment to them. And this study was observed the situation to automatically notify situations of 10 gilts that first bore just before and after farrowing. The result obtained the farrowing situations of them in real time by setup of the NESPOT-based monitoring system to check farrowing situation directly is as follow. The average time of the automatic notice about situation just before farrowing by the temperature sensor was 27.5 minutes before the beginning of farrowing (the expulsion time of a piglet). 6 of 8 pregnant gilts that first bore automatically were notified situations just before farrowing and the temperature sensors inserted into 2 ones before farrowing were omitted. (The automatic notice rate 75%) The average time of the automatic notice of situation just after farrowing by the load sensor was taken 46.5 minutes after the beginning of farrowing (the expulsion time of a first piglet). The average gestation period of 8 ones that first bore and were tested by the automatic notice of farrowing situation was 115.6 days. This result found that the automatic farrowing notice system by the temperature sensor is more efficient than the load sensor as the automatic farrowing alarm device and sanitary treatment and improvement of the omission rate were required.

The Effects of Different Farrowing Space on Lactating Sow Performances and Growth Performances of Piglets (분만 면적의 차이가 분만돈의 생산성과 자돈의 성장능력에 미치는 영향)

  • Lee, Jun-Yeob;Jeon, Jung-Hwan;Park, Kyu-Hyun;Song, Jun-Ik
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.157-164
    • /
    • 2012
  • This study was conducted to investigate the effect of different farrowing space, narrow and wide, on the sow performances and piglet growth performances. The $1.5m^2$ of narrow farrowing space was determined as the size of farrowing crate. The $3.0m^2$ of wide space for farrowing sow was the same of farrowing pen to allow the behavior freedom of sow. Baby piglets in the wide farrowing space was protected from crushing of sow by installation of safety bar. The pregnant sows used in this study were stall-housed during gestation and moved to each farrowing spaces on 8 d before parturition. Feed intake, backfat thickness and body condition score of sow were not affected by both farrowing spaces. However, the changes in backfat thickness and body condition score between farrowing and weaning in wide farrowing space were lower (p<0.05) than in narrow farrowing space. The return to estrus of sow was remarkably decreased in wide farrowing space compared to sows in narrow farrowing space. The lower number of stillbirth and higher mortality of piglets were observed in wide farrowing space. From the results, although wide farrowing space could be practically acceptable in terms of sow performances, possible cause of mortality of piglets should be scrutinized through observation of piglet and sow behaviors.

Effect of Individual, Group or ESF Housing in Pregnancy and Individual or Group Housing in Lactation on Sow Behavior

  • Weng, R.C.;Edwards, S.A.;Hsia, L.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1574-1580
    • /
    • 2009
  • To evaluate the effect of different housing systems on sow behavior, 80 gilts were randomly allocated at puberty to four treatments: i) sow stall in gestation followed by farrowing crate (SC), ii) group housing with individual feeding in gestation followed by farrowing crate (GC), iii) ESF (Electronic Sow Feeding) system in gestation followed by farrowing crate (EC), and iv) ESF system followed by group farrowing pen (EG). Behavioral observations were carried out on a total of 16 animals per treatment at the following stages: first day of allocation to housing treatment, day of service, 80 days after service, 109 days after service on entry to farrowing accommodation, 24 h before farrowing, day of farrowing, 14, 27 and 28 days after farrowing, at weaning. On each occasion, individual animals were observed for a 24 period with one minute time sampling. There were significant differences (p<0.001) between stages of the reproductive cycle for all the behavior patterns in all treatments. On the first day in experimental housing treatments, sows spent more time rooting and dog-sitting. Activity and investigatory behavior decreased as pregnancy progressed. An activity peak was apparent just before farrowing, followed by a high level of inactivity on the day of farrowing. Time spent active, eating and drinking increased as lactation progressed, and greatest activity and locomotion was seen immediately following weaning. There were significant differences between housing treatments (p<0.01) for standing, moving, eating, drinking, dog-sitting and lying. During pregnancy SC sows spent more time standing, rooting, drinking and dog sitting, while EC sows spent less time rooting and drinking and more time lying. During lactation, GC sows spent more time standing, moving and eating, less time dog sitting and lateral lying. Nursing frequency was reduced in GC sows (p<0.001). The maternal and piglet behaviors were influenced strongly by environment during lactation. However, it was also shown that previous housing history can influence the maternal behavior in the pre-farrowing stage and during early lactation.

Factors associated with farrowing assistance in hyperprolific sows

  • Napatsawan Wongwaipisitkul;Yanwarut Chanpanitkit;Natthacha Vaewburt;Piyakorn Phattarathianchai;Padet Tummaruk
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.39-49
    • /
    • 2024
  • Objective: The present study was performed to determine risk factors associated with the frequency of farrowing assistance in hyperprolific sows in a tropical environment and to investigate the impacts of farrowing assistance on piglet colostrum consumption and sow colostrum yield. Methods: Farrowing data from 352 Landrace×Yorkshire crossbred sows and 5,554 piglets in five commercial swine herds in Thailand were investigated. The sows were classified according to parity numbers: 1 (n = 72), 2 to 4 (n = 128), 5 to 6 (n = 84), and ≥7 (n = 68) and the total number of piglets born per litter (TB): 10 to 13 (n = 90), 14 to 16 (n = 117), and ≥17 (n = 145). The incidence of farrowing assistance and associated parameters were investigated. Results: The TB and farrowing duration averaged 15.8±0.2 and 279.9±11.2 min, respectively. The percentage of sows that required farrowing assistance was 29.8% and varied among herds from 5.7% to 53.3% (p<0.001). The percentage of piglets born after birth assistance using manual intervention was 8.4%. Sows with parity numbers 1 and 2 to 4 had a lower frequency of farrowing assistance than sows with parity numbers ≥7 (p<0.01). The colostrum yield of sows that required farrowing assistance did not differ from sows that farrowed without assistance (5.3±0.2 and 5.1±0.1 kg; p = 0.288); however, the colostrum consumption of piglets born from sows that required farrowing assistance was lower than those born from sows that farrowed without assistance (302.2±15.7 and 354.2±5.6 g; p<0.001). Blood oxygen saturation of the piglets born after birth assistance tended to be lower than the piglets that farrowed without birth assistance (87.8%±1.3% vs 90.4%±0.4%; p = 0.054). Conclusion: The frequency of farrowing assistance in sows varied among herds and was influenced by parity number. The piglets born after receiving birth assistance should receive special care to improve their blood oxygen saturation and enhance colostrum intake.

Effects of Ventilation Types on Interior Environment of the Enclosed Farrowing-Nursery Pig House (무창 분만 ${\cdot}$ 자돈사 환기 형태가 돈사내 환경에 미치는 영향)

  • Yoo, Y.H.;Song, J.I.;Kang, H.S.;Jeon, B.S.;Kim, T.I.;Kim, H.H.
    • Journal of Animal Environmental Science
    • /
    • v.8 no.2
    • /
    • pp.79-86
    • /
    • 2002
  • This study was conducted to collect basic data about the effects of ventilation types on the interior environment of the enclosed farrowing-nursery pig house in Anseong, Icheon and Jeungpyong. Surveyed ventilation types in the enclosed farrowing-nursery pig house are classified in to 4 types. In V1 type, air enters through a planar slot inlet placed on the juncture of the entering wall and exit through the chimney fan outlet; in V2 type, air enters through a perforated ceiling inlet and exits chimney fan outlet(V2); in V3 type, air enters through a circular duct inlet and exit chimney fan outlet(V3); in V4 type, enters through a circular duct inlet and exits side wall exhaust fan outlet(V4). Temperature, relative humidity, air velocity and ammonia concentration($NH_3$) were measured in the interior of swine building in the summer. Interior temperature was not remarkably different in all ventilation types in this study. However, temperature of the V4 was somewhat lower than that of the other types. Air velocity of the V4 was higher and $NH_3$ concentration of the V4 was lower than those of other ventilation types. It is suggested that the V4 ventilation type be applicable in the enclosed farrowing-nursery pig house in Korea.

  • PDF

Benefits of Prepartum Nest-building Behaviour on Parturition and Lactation in Sows - A Review

  • Yun, Jinhyeon;Valros, Anna
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1519-1524
    • /
    • 2015
  • It is well known that prepartum sows have an innate motivation to build a nest before parturition. Under commercial conditions, however, the farrowing crate, which is widely used in modern pig husbandry, inhibits this innate behaviour through the lack of space, materials, or both. Thus, restriction of nest-building behaviour could generate increased stress, resulting in a decrease in maternal endogenous hormones. Hence, it could lead to detrimental effects on farrowing and lactating performance. Here we review interactions between prepartum nest-building behaviour, stress and maternal endogenous hormone levels, and discuss their effects on parturition, lactation, and welfare of sows and offspring.

Coping with large litters: management effects on welfare and nursing capacity of the sow

  • Peltoniemi, Olli;Han, Taehee;Yun, Jinhyeon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.199-210
    • /
    • 2021
  • A number of management issues can be used as drivers for change in order to improve animal welfare and nursing capacity of the hyperprolific sow. Group housing of sows during gestation is a recommended practice from the perspective of animal welfare. Related health issues include reproductive health and the locomotor system. It appears that management of pregnant sows in groups is challenging for a producer and considerable skill is required. We explored the benefits and challenges of group housing, including feeding issues. Increasing litter size requires additional attention to the mammary gland and its ability to provide sufficient nursing for the growing litter. We discuss the fundamentals of mammary development and the specific challenges related to the hyperprolific sow. We also address challenges with the farrowing environment. It appears that the old-fashioned farrowing crate is not only outdated in terms of welfare from the public's perspective, but also fails to provide the environment that the sow needs to support her physiology of farrowing, nursing, and maternal behaviour. Studies from our group and others indicate that providing the sow with a loose housing system adequate in space and nesting material, along with reasonable chance for isolation, can be considered as fundamental for successful farrowing of the hyperprolific sow. It has also been shown that management strategies, such as split suckling and cross fostering, are necessary to ensure proper colostrum intake for all piglets born alive in a large litter. We thus conclude that welfare and nursing capacity of the sow can be improved by management. However, current megatrends such as the climate change may change sow management and force the industry to rethink goals of breeding and, for instance, breeding for better resilience may need to be included as goals for the future.

Behaviors and body weight of suckling piglets in different social environments

  • Hong, Joon-Ki;Kim, Ki-Hyun;Hwang, Hyun-Su;Lee, Jae-Kang;Eom, Tae-Kyung;Rhim, Shin-Jae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.902-906
    • /
    • 2017
  • Objective: This study was conducted to characterize the behaviors and the body weight of suckling piglets in different social environments. Methods: Two groups of sows and suckling piglets housed either in individual farrowing crates in separate pens ($1.8{\times}2.4m$, the control group) or in groups of three sows with their piglets in farrowing crates in a large common enclosure ($5.4{\times}2.2m$, the treatment group) were observed with the aid of video technology for 9 consecutive hours on days 1, 2, and 3, after mixing. Results: Suckling, agonistic, and elimination behaviors of suckling piglets were significantly higher in the control group than in the treatment group. Inactive behavior was higher in the treatment group than in the control group. Most of the effects of the social environment on the suckling piglets seem to be the result of large reductions in behaviors and body weight for piglets switching from high activity to low activity. Moreover, suckling behavior and birth body weight were highly correlated with body weight at the end of the test. Conclusion: The social environment that resulted from mixing, thus, had significant effects on the behavior and body weight of suckling piglets, and behavioral characteristics, therefore, should be considered when making improvements to the husbandry and care methods used in swine production.

Analysis of Changing Pattern of Noxious Gas Levels with Malodorous Substance Concentrations in Individual Stage of Pig Pens for 24 hrs to Improve Piggery Environment (돈사환경 개선을 위한 생육단계별 돈사내 악취물질 농도 및 유해가스의 1일 변화추세 분석)

  • You, Won-Gyun;Kim, Cho-Long;Lee, Myung-Gyu;Kim, Dong-Kyun
    • Journal of Animal Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.25-34
    • /
    • 2012
  • Noxious gases with malodorous substance concentrations in each stages of pig buildings were determined at a typical 400sow-scale farm to improve piggery environment. Using IAQ-300 and pDR-1000AN, continuous records for the concentration of $NH_3$, CO, $CO_2$, $NO_2$, $SO_2$, $H_2S$, $O_2$, and along with temperature, humidity, dust concentrates from individual pig pens were collected to analyze every 6 hours' condition of indoor environment for 24 hours' period. In most pig houses, the air quality at noon was good, while at night (00:00~06:00), air composition became noxious in all buildings. The order of buildings' air quality for 24 hrs was pregnant > farrowing > nursery > growing > finishing. The cause of air quality differences was presumed to be the differences of stocking density, defecating amount and the length of exposure time of slurry in indoors. In conclusion, well-designed building structure, proper control of stocking density, quick removal of excreta from pig pens and continuous ventilation are prerequisites to improve pig housing environment.

Change in the Gut Microbiota of Lactating Sows and Their Piglets by Inclusion of Dietary Spray-Dried Plasma in Sow Diets

  • Jeong Jae Lee;Hyunjin Kyoung;Jin Ho Cho;Kyeong Il Park;Yonghee Kim;Jinmu Ahn;Jeehwan Choe;Younghoon Kim;Hyeun Bum Kim;Minho Song
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.516-524
    • /
    • 2024
  • This study aimed to investigate the effects of dietary spray-dried plasma (SDP) on the gut microbiota of lactating sows and their piglets. A total of 12 sows were randomly assigned to one of two dietary treatment groups in a completely randomized design. The treatments were a sow diet based on corn and soybean meal (CON), and a CON diet with an added 1% SDP. The sows were fed the dietary treatments from d 30 before farrowing to weaning (d 28). The fecal samples of three sows from each treatment and two of their randomly selected piglets were collected to verify their fecal microbiota. There were no differences in the alpha diversity and distinct clustering of the microbial communities in the sows and their piglets when SDP was added to the sow diets from late gestation to weaning. The fecal microbiota of the lactating sows and their piglets showed a higher relative abundance of the phylum Bacteroidota and genus Lactobacillus and Ruminococcus and showed a lower relative abundance of the phylum Bacillota and genus Bacteroides, Escherichia/Shigella, and Clostridium in the sows fed the SDP diet than those fed the CON diet. Overall, these results show that the addition of SDP to the sow diet during lactation altered the gut environment with positive microbial composition changes. These results were similar in the nursing piglets, suggesting that the control of the sow diets during lactation may contribute to the intestinal health and growth in piglets after weaning.