• Title/Summary/Keyword: Faradaic impedance

Search Result 14, Processing Time 0.1 seconds

Intepretation of Faradaic Impedance for Corrosion Monitoring

  • Itagaki, M.;Taya, A.;Imamura, M.;Saruwatari, R.;Watanabe, K.
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • A polarization resistance is generally used to estimate the corrosion rate in the corrosion monitoring by an electrochemical impedance method. When the Faradaic impedance has a time constant due to the reaction intermediate, the electrochemical impedance describes more than one loop on the complex plane. For example, the electrochemical impedance of iron in acidic solution shows capacitive and inductive loops on the complex plane. In this case, the charge transfer resistance and the polarization resistance are determined at middle and low frequency ranges, respectively. Which should be selected for corrosion resistance in corrosion monitoring, the charge transfer resistance or the polarization resistance'? In the present paper, the above-mentioned question is examined theoretically and experimentally.

Conversion of a Constant Phase Element to an Equivalent Capacitor

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.318-321
    • /
    • 2020
  • Here I present a formula which converts a constant phase element (CPE) to its equivalent capacitor. Electrochemical impedance spectroscopy is capable of resolving a complex electrochemical processes into its faradaic and non-faradaic elements, and the non-faradaic process is frequently described as a CPE in place of a capacitor due to the non-ideality. Being described as a capacitor, the non-faradaic element provides information by its capacitance, but a CPE cannot provide a physical meaning. In order to solve the problem, the CPE has been dealt with as an equivalent capacitor of which the capacitance provides practical information. Succeeding the two methods previously suggested, a new conversion method is suggested in this report. While the previous ones manipulate only the CPE, the new method takes both the CPE and its related resistor into account for conversion. By comparing the results obtained by the three methods, we learn that the results are nearly the same within tolerable ranges, and conclude that any of the method choices is acceptable depending on the conditions of the system of interest.

Electrode of Low Impedance by Polypyrrole Addition for Supercapacitor (폴리피롤 첨가에 의한 supercapacitor용 저 임피던스 전극)

  • 김경민;장인영;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2003.11a
    • /
    • pp.343-350
    • /
    • 2003
  • The best Ppy weight ratio was 7 wt% and the optimal electrode composition ratio was 78 : 17 : 5 wt.% of (MSP-20 : BP-20 =1 : 1), (Super P : Ppy =10 : 7) and P(VdF-co-HFP). Implantation of Ppy as the conducting agents have led to superior electrochemical characteristics because of the low of internal resistance and faradaic capacitance. The result of unit cell with Ppy 7 wt% were as follows: 28.02 Fig of specific capacitance, 1.34 Ω of DC-ESR and 0.36 Ω of AC-ESR. Unit cell showed a good stability up to 200 charge-discharge cycles, retaining 82% of their original capacity at 200 cycles. From the analysis of impedance, the electrodes with Ppy 7 wt% showed low ESR, low charge transfer resistance and quick reaction rate. It was inferred that quick charge-discharge was possible. As compared with the specific capacitance (rectangular shape) of CV, it was also concluded that the specific capacitance originated from thecompound phenomena of the faradaic capacitance by oxidation and reduction of Ppy and the non-faradaic capacitance by adsorption-desorption of activated carbon.

  • PDF

Effects of the Polarization Resistance on Cyclic Voltammograms for an Electrochemical-Chemical Reaction

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.146-151
    • /
    • 2015
  • Here I report an electrochemical simulation work that compares voltammetric current and resistance of a complex electrochemical reaction over a potential scan. For this work, the finite element method is employed which are frequently used for voltammetry but rarely for impedance spectroscopy. Specifically, this method is used for simulation of a complex reaction where a heterogeneous faradaic reaction is followed by a homogeneous chemical reaction. By tracing the current and its polarization resistance, I learn that their relationship can be explained in terms of rate constants of charge transfer and chemical change. An unexpected observation is that even though the resistance is increased by the rate of the following chemical reaction, the current can be increased due to the potential shift of the resistance made by the proceeding faradaic reaction. This report envisions a possibility of the FEM-based resistance simulation to be applied to understand a complex electrochemical reaction. Until now, resistance simulations are mostly based on equivalent circuits or complete mathematical equations and have limitations to find proper models. However, this method is based on the first-principles, and is expected to be complementary to the other simulation methods.

Operating Conditions of Proton Exchange Membrane Fuel Cell Using Grafoil$^{TM}$ as Bipolar Plates (그라포일 분리판을 이용한 고분자 전해질 연료전지의 운전 조건에 관한 연구)

  • Park, Taehyun;Chang, Ikwhang;Lee, Yoon Ho;Lee, Juhyung;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.85.1-85.1
    • /
    • 2011
  • In this study, Grafoil$^{TM}$ which has comparable electric resistance and chemical stability but is flexible, fragile, and cheap material was adopted as bipolar plates for proton exchange membrane fuel cell(PEMFC) having only one straight line flow channel. Because of its flexibility, pressurizations of cell with various pressures showed different operating characteristics compared to ordinary graphite-used PEMFC. While performances of both cells decreased as these were pressurized, investigation of ohmic and faradaic resistance by electrochemical impedance measurement indicated different tendency of change. Ohmic resistance of graphite-used cell increased with increasing pressure, which is reversed in Grafoil$^{TM}$-used cell. It is speculated that effective chemical reaction area is decreased with increasing pressure in case of graphite-used one, but because of flexible property of Grafoil$^{TM}$, gas diffusion layer in Grafoil$^{TM}$-used cell was well-activated. Different rate of change of faradaic resistances in both cells support this supposition. However, although optimum point of pressurization is found, it is required to investigate other operating conditions because of low performance compared to graphite-used cell.

  • PDF

Singular Point of Voltammetric Impedance Data and its Application in Analyzing Voltammetry Data

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.149-156
    • /
    • 2018
  • In this technical note, I report the analysis of electrochemical impedance data measured with potential sweeping. Even though the instruments for voltammetric impedance measurements have been developed for decades using different approaches, their applications are limited due to the lack of well-established protocols to easily analyze voltammetry data. To fill this gap, the singular point of the specific potential is considered that is only determined by the standard/formal potential and the transfer coefficient and is independent of the kinetics and experimental parameters (including revertability) of faradaic reactions. Taking the advantage of its inertness, I suggest an approach employing the singular point as a reference to obtain general electrochemical information. As all the concepts and methods are verified with numerical simulations, this technique is expected to be applied for complex reactions involving electrochemical and chemical reaction mechanisms.

Application of a General Gas Electrode Model to Ni-YSZ Symmetric Cells: Humidity and Current Collector Effects

  • Shin, Eui-Chol;Ahn, Pyung-An;Seo, Hyun-Ho;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.511-520
    • /
    • 2016
  • Electrolyte-supported symmetric Ni-YSZ cermet electrodes of ca. $23{\mu}m$ were prepared by screenprinting and the impedance was measured as a function of humidity from 2% to 90% balanced in $H_2$ at a total flow rate of 50 sccm. The Ni felt current collector of 1 mm thickness exhibited a Gerischer-like gas concentration impedance in the low frequency range, which was similarly observed in the cermet-supported solid oxide cells, while the Pt paste collector exhibited only electrochemical polarization. The electrochemical polarization of both samples was modeled by a non-ideal diffusion-reaction transmission line model including CPEs with ${\alpha}$= 0.5. In the case of the Pt paste collector, all the Bisquert parameters exhibited humidity dependence to the -1/2 power, supporting a non-faradaic chemical reaction mechanism at three phase boundaries. Consequently, the surface diffusivity and reaction rate increased linearly with humidity. Less pronounced humidity dependence and somewhat lower utilization length with an Ni felt collector can be attributed to the diffusion-limited gas flow through the collector.

AC Impedance Study of Hydrogen Oxidation and Reduction at Pd/Nafion Interface

  • Song, Seong-Min;Koo, Il-Gyo;Lee, Woong-Moo
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.3
    • /
    • pp.231-238
    • /
    • 2001
  • Electrocatalytic activity of palladium for hydrogen oxidation and reduction was studied using AC impedance method. The system under study was arranged in electrolytic mode consisting of Pd electrode under study, Pt counter electrode and Nafion electrolyte between them. Two types of Pd electrodes were used - carbon-supported Pd (Pd/C) and Pd foil electrode. Pd/C anode contacting pure hydrogen showed a steady decrease of charge transfer resistance with the increase of anodic overpotential, which is an opposite trend to that found with Pd foil anode. But Pd foil cathode also exhibited a decrease of the resistance with the increase of cathodic overpotential. The relationship between imposition of overpotential and subsequent change of the charge transfer resistance is determined by the ratio of the rate of faradaic process to the rate of mass transportation; if mass transfer limitation holds, increase of overpotential accompanies the increase of charge transfer resistance. Regardless of the physical type of Pd electrode, the anode contacting hydrogen/oxygen gas mixture did not reveal any independent arc originated from local anodic oxygen reduction.

  • PDF

Electrolytic Conductance Measurement using Four-Electrode Cell and Potentiometric Circuit (포텐티오메트릭 4-전극 용기에 의한 전도도 측정)

  • Jung-Kyoon Chon;Woon-kie Paik
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.2
    • /
    • pp.129-135
    • /
    • 1976
  • A direct-reading conductance measuring system using a potentiostatic circuit and a four-electrode conductance cell was devised. The difficulties with the traditional method of using the Wheatston bridge and a two-electrode cell due to the complicated nature of the electrochemical system, the double layer capacitance and the Faradaic impedance at the electrodes, etc., could be avoided in this method. The devised instrument proved to be convenient and suitable for precise measurements. The results of measured conductivities of KCl and HCl solutions are reported.

  • PDF

The Effective Capacitance of a Constant Phase Element with Resistors in Series

  • Byoung-Yong, Chang
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.479-485
    • /
    • 2022
  • The power of energy storage devices is characterized by capacitance and the internal resistance. The capacitance is measured on an assumption that the charges are stored at the electrode interface and the electric double layer behaves like an ideal capacitor. However, in most cases, the electric double layer is not ideal so a constant phase element (CPE) is used instead of a capacitor to describe the practical observations. Nevertheless, another problem with the use of the CPE is that CPE does not give capacitance directly. Fortunately, a few methods were suggested to evaluate the effective capacitance in the literature. However, those methods may not be suitable for supercapacitors which are modeled as an equivalent circuit of a CPE and resistor connected in series because the time constant of the equivalent circuit is not clearly studied. In this report, in order to study the time constant of the CPE and find its equivalent capacitor, AC and DC methods are utilized in a complementary manner. As a result, the time constants in the AC and DC domains are compared with digital simulation and a proper equation is presented to calculate the effective capacitance of a supercapacitor, which is extended to an electrochemical system where faradaic and ohmic processes are accompanied by imperfect charge accumulation process.