• Title/Summary/Keyword: Far-field noise

Search Result 175, Processing Time 0.024 seconds

Acoustic Scattering Holography and Analysis of Its Errors (산란 음향 홀로그래피의 기본 이론 및 오차 해석)

  • 이상협;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.292-292
    • /
    • 2004
  • There are many difficulties to get the scattered field generated by obstacle which has arbitrary shape or irregular surface impedance by using analytic solution or numerical methods. In this study, we propose experimental method of acoustic scattering holography that can predict the far-field scattered field based on nearfield measurements. First of all, we express scattered field using K-H integral equation and compare the differences of which green's function we use. Also we consider analytic solution of scattered field by infinite cylinder to analysis for the errors due to apply cylinderical holography. So the errors which caused by holography due to frequency (ka) and microphone spacing are also analyzed by numerical simulation.

  • PDF

Experimental Study on Combustion Noise Characteristics in Turbulent Jet Diffusion Flames (난류 제트확산화염의 연소소음 특성에 관한 실험연구)

  • 김호석;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1253-1263
    • /
    • 1994
  • The experimental study is carried out to identify the combustion generated noise mechanism in free turbulent jet diffusion flames. Axial mean fluctuating velocities in cold and reacting flow fields were measured using hot-wire anemometer and LDv.The overall sound pressure level and their spectral distribution in far field with and without combustion were also measured in an anechoic chamber. The axial mean velocity is 10-25% faster and turbulent intensities are about 10 to 15% smaller near active reacting zone than those in nonreacting flow fields. And sound pressure level is about 10-20% higher in reacting flow fields. It is also shown that the spectra of the combustion noise has lower frequency characteristics over a broadband spectrum. These results indicate that the combustion noise characteristics in jet diffusion flames are dominated by energy containing large scale eddies and the combusting flow field itself. Scaling laws correlating the gas velocity and heat of combustion show that the acoustic power of the combustion noise is linearly proportional to the 3.8th power of the mean axial velocity rather than 8th power in nonreacting flow fields, and the SPL increases linearly with logarithmic 1/2th power of the heat of combustion.

Prediction and analysis of structural noise of a box girder using hybrid FE-SEA method

  • Luo, Wen-jun;Zhang, Zi-zheng;Wu, Bao-you;Xu, Chang-jie;Yang, Peng-qi
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.507-518
    • /
    • 2020
  • With the rapid development of rail transit, rail transit noise needs to be paid more and more attention. In order to accurately and effectively analyze the characteristics of low-frequency noise, a prediction model of vibration of box girder was established based on the hybrid FE-SEA method. When the train speed is 140 km/h, 200 km/h and 250 km/h, the vibration and noise of the box girder induced by the vertical wheel-rail interaction in the frequency range of 20-500 Hz are analyzed. Detailed analysis of the energy level, sound pressure contribution, modal analysis and vibration loss power of each slab at the operating speed of 140 km /h. The results show that: (1) When the train runs at a speed of 140km/h, the roof contributes more to the sound pressure at the far sound field point. Analyzing the frequency range from 20 to 500 Hz: The top plate plays a very important role in controlling sound pressure, contributing up to 70% of the sound pressure at peak frequencies. (2) When the train is traveling at various speeds, the maximum amplitude of structural vibration and noise generated by the viaduct occurs at 50 Hz. The vibration acceleration of the box beam at the far field point and near field point is mainly concentrated in the frequency range of 31.5-100 Hz, which is consistent with the dominant frequency band of wheel-rail force. Therefore, the main frequency of reducing the vibration and noise of the box beam is 31.5-100 Hz. (3) The vibration energy level and sound pressure level of the box bridge at different speeds are basically the same. The laws of vibration energy and sound pressure follow the rules below: web

An Experimental Study on Installation of the Shielding Material to Reduce the Shock Noise of a Gun (화포소음 저감을 위한 차폐재 설치에 관한 실험적 연구)

  • Lee, Haesuk;Hong, Junhee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.453-461
    • /
    • 2016
  • The paper represents the experimental analysis of the shock noise of medium caliber guns when a projectile is passed through the shielding material. In the study, the shielding material was constructed and tested in three separate experiments. The shielding material was not installed for medium caliber gun in Case 1. A medium caliber gun was fully covered with shielding material in Case 2, and another one was put with shielding material near muzzle in Case 3. In each experiment, the experimental data was compared with each other. Results showed the firing shielding material achieved a significant noise reduction in $90^{\circ}$ to the noise source. Case 3 is confirmed to be better effective than Case 2 in the near field. But, the noise reduction in the far field is small in quantity due to the low frequency. The paper is considered that further study is necessary for the shielding material which can absorb a low frequency noise in the future.

Cavitation Noise Prediction: Direct numerical simulation and Modeling (직접 수치 모사를 통한 캐비테이션 소음 예측 및 모델링)

  • Seo, Jung-Hee;Moon, Young-J.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2929-2934
    • /
    • 2007
  • Prediction methods for cavitation noise are presented. At first, direct numerical simulation of cavitating flow noise has been performed, and acoustic analogy equation based on the cavitation noise modeling is derived. For the direct numerical simulation, a density based homogenous equilibrium model is employed to simulate cavitating two-phase flow and the governing equations are solved with high-order numerical schemes to resolve cavitation noise. The compressible Navier-Stokes equations for mixture fluids are discretized with a sixth-order central compact scheme, and the steep gradient of flow variables and supersonic regions are treated with the selective spatial filtering technique. The direct simulation of cavitating flow noise is performed for a 2D circular cylinder at cavitation number 0.7 and 1. The far-field noise is also predicted with the derived analogy equation. Noise spectrum predicted with the equation is well compared with the result of direct numerical simulation and also agree well with the theory.

  • PDF

A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Perforated Tube (다공관형 초음속 배기노즐의 공력소음에 관한 연구)

  • 이동훈
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.113-120
    • /
    • 1999
  • A perforated tube nozzle as an exhaust noise suppressor of a high-speed civil transport(HSCT) is proposed. The experimental results for the near and far field sound. the visualization of jet structures and the static pressure distributions in the jet passing through a perforated tube are presented and discussed in comparison with those for a simple tube. It is shown that the perforated tube has an excellent performance to greatly reduce the shock-associated noise and that also the turbulent mixing noise is reduced in the range of a limited jet pressure ratio. This considerable noise reduction is due to the pressure relief caused by the through-flow through the perforated holes. Such a pressure relief results in the transformation of normal shock waves into weak Mach waves of X -type and increases the thrust force of the perforated tube nozzle.

  • PDF

Exterior Acoustic Holography Reconstruction of a Tuning Fork using Inverse Non-singular BEM (역 비고유치 BEM을 사용한 소리 굽쇠의 외부 음향 홀로그래픽 재현)

  • Jarng, Soon-Suck;Lee, Je-Hyeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.306-311
    • /
    • 2002
  • Non-singular boundary element method (BEM) codes are developed in acoustics application. The BEM code is then used to calculate unknown boundary surface normal displacements and surface pressures from known exterior near Held pressures. And then the calculated surface normal displacements and surface pressures are again applied to the BEM in forward in order to calculate reconstructed field pressures. The initial exterior near field pressures are very well agreed with the later reconstructed field pressures. Only the same number of boundary surface nodes (1178) are used far the initial exterior pressures which are initially calculated by Finite Element Method (FEM) and BEM. Pseudo-inverse technique is used for the calculation of the unknown boundary surface normal displacements. The structural object is a tuning fork with 128.4 Hz resonant. The boundary element is a quadratic hexahedral element (eight nodes per element).

  • PDF

Realization of Acoustic Scattering Holography (산란 음향 홀로그래피의 구현 방법론)

  • 김양한
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1101-1106
    • /
    • 2004
  • There are many difficulties to get the scattered field generated by obstacle which has arbitrary shape or irregular surface impedance by using analytic solution or numerical methods. In this study, we propose a method of which makes acoustic scattering holography that can predict the far-field scattered field based on nearfield measurements. This method provides the scattered fields of each wave-number components of incident fields. We express the relationship of wave-number components between incident fields and scattered fields using scattering matrix which is transfer matrix of wave-number components. Lastly, we prove the relation between wave-number components of incident and scattered field by experiments. The errors which are caused by measurements and decomposition methods are also analyzed.

Realization of acoustic scattering holography (산란 음향 홀로그래피의 구현 방법론)

  • 이상협;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.640-644
    • /
    • 2003
  • There are many difficulties to get the scattered field generated by obstacle which has arbitrary shape or irregular surface impedance by using analytic solution or numerical methods. In this study, we propose experimental method of acoustic scattering holography that can predict the far-field scattered field based on nearfield measurements. In particular we can get the scattered fields of each wave-number components of incident fields. We express the relationship of wave-number components between incident fields and scattered fields using scattering matrix which is transfer matrix of wave-number components. Lastly, we prove the relation between wave-number components of incident and scattered field by experiments. The errors which are caused by measurements and decomposition methods are also analyzed.

  • PDF

Computation of serrated trailing edge flow and noise using a hybrid zonal RANS-LES

  • Kim, Tae-Hyung;Lee, Seung-Hoon;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.414-419
    • /
    • 2012
  • The evaluation of a zonal RANS-LES approach is documented for the prediction of broadband noise generated by the flow past unmodified and serrated airfoil trailing edges at a high Reynolds number. A multi-domain decomposition is considered, where the acoustic sources are resolved with a LES sub-domain embedded in the RANS domain. A stochastic vortex method is used to generate synthetic turbulent perturbations at the RANS-LES interface. The simulations are performed with a general-purpose unstructured control-volume code FLUENT. The far-field noise is calculated using the aeroacoustic analogy of Ffowcs Williams-Hawkings. The results of the simulation are validated through the full-scaled wind turbine acoustic measurements. It is found that the present approach is adequate for predicting noise radiation of serrated trailing edge flow for low noise rotor system.

  • PDF