• Title/Summary/Keyword: Fan spray

Search Result 57, Processing Time 0.021 seconds

Fan-shaped Spray Characteristics of High Pressure Slit Nozzle in a Gasoline Direct Injection Engine (가솔린 직접분사식 고압 슬릿 노즐의 팬형 분무 특성 고찰)

  • Song, Bhum-Keun;Kim, Chong-Min;Kang, Shin-Jae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2239-2244
    • /
    • 2003
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

  • PDF

Spray Characteristics of High Pressure Fan Spray Injector with Various Crossflow Speed (횡방향 유속 변화에 따른 고압 가솔린 팬형 인젝터의 분무특성)

  • Choi, Jae-Joon;Moon, Seok-Su;Bae, Choong-Sik
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.38-44
    • /
    • 2005
  • The direct injection into the cylinders has been regarded as a way of the reduction in fuel consumption and pollutant emissions. The spray produced from the injector of DIS(Direct Injection Spark Ignition) engine is of paramount importance in DISI engines. Fan-spray injector as well as swirl-spray injector was developed and utilized to the DISI engines. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside the cylinder of the DISI engineer. The direct Mie scattered images presented the macroscopic view of the liquid spray fields interacted with crossflow. Particle sizes of fuel droplets were measured with phase Doppler anemometer(PDA) system. A faster cross-flow field made SMD larger and $D_{10}$ smaller. The experiments show the interaction of air flow field and the fuel spray field of fan-spray. The results can be utilized to construct the data-base for the spray and fuel-air mixing mechanism as a function of the flow characteristics.

  • PDF

A Study on the Interaction Effect Between Spray Fan Formed by Gas/Liquid Swirl Injector (기체/액체를 사용하는 Swirl 인젝터의 간섭효과에 관한 연구)

  • Joung, Rae-Hyuck;Kim, Yoo;Cha, Young-Ran;Park, Joung-Bae;Park, Uoo-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • Experimental study was carried out to investigate the interaction effect between spray fan formed by gas/liquid swirl injector. Test variables were supply pressure and injector distance. Water and air were the simulant for the experiment. For water supply only; Collected water mass was concentrated at the lower part of the two spray fan, but this effect was reduced with increasing supply pressure. Both air and water supply1; Collected water mass was again concentrated at the lower part of the impingement point, but this effect was reduced when air/water supply pressure ratio was increased.

  • PDF

A Study of Interaction Effect from Spray Fan Formed by Impinging Jets (충돌분류에 의해 형성된 Spray fan의 간섭효과에 관한 연구)

  • Han, J.S.;Kim, S.J.;Moon, D.Y.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.9-15
    • /
    • 1999
  • The Analysis of spray characteristics for combined spray group are necessary to develop large rocket engine. In this study, basic effects of interaction from spray fan formed by impinging jets were investigated with respect to mass distribution, droplet velocities and diameter. Patternater and PDPA are used for experimental apparatus. Water was used as a test fluid When momentum ratio is 1, effect of interaction from collision of spray fan on mass distribution are small. Also, effect of interaction from collision of spray fan on droplet velocities and diameter are small. But, droplet diameter is smaller near collision point due to second collision. Therefor, for the same momentum ratio from spray fan formed by impinging jets, we may neglect effect of interaction on mass distribution, droplet velocities and diameter.

  • PDF

Spray Deposit Distribution of a Small Orchard Sprayer (소형 과수방제기 살포입자의 부착량 분포)

  • Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.32 no.3
    • /
    • pp.145-152
    • /
    • 2007
  • Uniformity of spray deposit is one of the important factors in spray performance affecting efficacy of pest management. Distributions of spray deposit on artificial targets were measured and analyzed to enhance the efficiency of spray application. The research was studied to understand the deposition characteristics of spray droplets and to determine the optimum conditions of chemical application. The deposit and its pattern by the lower fan speed was more uniform and higher than that by the higher fan speed. The upward blasting distance was limited within 3 m, but the limit to the ground level was expanded the distance more than 3.5 m because of the accumulated droplets. When the fan speed was higher at the distance of 2.5 m, deposit reached to maximum. When the distance increased, deposit was getting lower. At the both fan speeds, the deposit was concentrated below $30^{\circ}$ because of the gravitation and the resistance of wind. This research can be useful in designing an orchard sprayer and its operation for various tree canopies. To achieve a uniform distribution of deposit using the air-blast type orchard sprayer, the application rate from the middle boom should be increased as the air velocity to the upward increased. The spray rate to the side boom should be limited in a minimal level.

Design Factors of Boom Sprayer(II) -Spray Droplet Size and Coverage Characteristics on Rice Plants- (붐방제기 살포장치의 설계요인 구명을 위한 실험적 연구(II) -노즐의 분무유형 및 벼의 피복특성-)

  • 정창주;김학진;이중용;최영수;최중섭
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.313-322
    • /
    • 1995
  • This study was conducted to find the design factors of spraying device of the boom sprayer for low volume application. Specific objectives of this study were 1) to select proper nozzles for broadcast spraying and row crop spraying by the nozzle spray characterisic experiment, and 2) to investigate the coverage characteristic of rice plant at the row crop spraying. The results of this study are summarized as follows. (1) From the tested results on the droplet diameter spectrum and spray pattern the standard flat-fan nozzle and drift guard nozzle were judged as appropriate for the broadcasting. Even flat-fan nozzle showed similar span values to standard flat-fan nozzles and drift guard nozzle : however, the nozzles were found to be inappropriate for broadcasting because of their spray pattern. Hollow cone nozzle showed relatively small span values and uniform spray pattern. (2) For the upper and lower sides of the rice plants, coverage rates of even flat-fan nozzles and hollow cone nozzles were maximum at the second row, but decreased rapidly after the third row. For the middle side of the rice plants, coverage rates of them were maximum at the first row, but decreased rapidly. When one nozzle was tested, C.V. values were in the range of 90~160% and 60~160% on entire heights of rice plant for even flat-fan nozzles and hollow cone nozzles respectively. C.V. values at other parts were poor. Spray coverage rate at the middle part was improved by overlapping the nozzles whereas there was little difference on the upper and lower part of rice plants. (3) For spraying lower part of rice plant between rows, even flat-fan nozzles and hollow cone nozzle were judged as appropriate, but in order to ensure the uniform coverage, distance between nozzles, recommended to be less than 90cm.

  • PDF

An Experimental Study on Breakup Mode of Epoxy Paint Discharging from a Fan Spray Nozzle (선형분무노즐로부터 분무되는 에폭시계 도료의 분열기구에 대한 실험적 연구)

  • Kang, S.I.;Lee, S.Y.;An, S.M.;Ryu, S.U.
    • Journal of ILASS-Korea
    • /
    • v.12 no.3
    • /
    • pp.138-145
    • /
    • 2007
  • In the present work, the breakup mechanism of highly viscous epoxy paints discharged from a fan spray nozzle was examined experimentally. The paints tested were non-Newtonian fluids, composed of epoxy resin, solid particles and other additives. The paint spray discharged from the nozzle was visualized and recorded using a digital camera with back illumination. Due to presence of the solid particles, perforation of liquid sheet was observed in most cases, even at low-Reynolds number conditions (Re < 15,000) where the aerodynamic-wave breakup mode is used to be dominant for pure liquids. However, with the increase of the particle concentration, the sheet became longer and the thickness at breakup became thinner to some extent. This is because, with higher concentration of solid particles, the stabilizing effect by the viscosity increase predominates over the destabilizing effect by perforation.

  • PDF

Pan-shaped Spray Characteristics of GDI High Pressure Slit Nozzle Injector (가솔린 직접분사식 고압 슬릿 노즐 분사기의 팬형 분무 특성 고찰)

  • Song, Bhum-Keun;Kim, Won-Tae;Kang, Shin-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.70-76
    • /
    • 2005
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

Study on the Spray Behavior from Swirl and Fan Spray Type Gasoline Injectors Impinging on the Constant Temperature Flat Plate (스월형 및 팬스프레이형 고압직분식 가솔린 분사기의 상온 평판에서의 분무 충돌 특성에 관한 연구)

  • Kim, Chong-Min;Kang, Shin-Jae;Kim, Man-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.100-106
    • /
    • 2006
  • The behavior of spray impinging on the inclined constant temperature flat plate was experimentally investigated. To clarify the wall effect of a high pressure DISI injector, a relative angle of the inclined wall to a spray axis was varied. Spray penetration along the wall was observed optically and it was compared with that of a Fan spray type and Swirl type spray. To evaluate various spray motion quantitatively, a spray path penetration which describe the development of a spray tip along the wall was newly introduced. To observe the structure of an impinging spray, it was visualized by a controlled stroboscope light and its visualized image was captured on an CCD camera. Using the digital image of impinging spray $H_x$ and $R_x$ was extracted to clarify the structure of impinging spray. The main parameter of the relative position of the wall was the inclined angle which was defined as the angle was varied from $0^{\circ}$ (vertical impingement) to $60^{\circ}$ at the same condition.