• Title/Summary/Keyword: Fan noise

Search Result 477, Processing Time 0.026 seconds

Analysis of Non-Uniform Inflow Fan Noise (비균일 입류에 의한 팬소음 해석)

  • Chung, Ki-Hoon;Choi, Han-Lim;Yun, Young-Il;Lee, Sang-Hyeon;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.106-112
    • /
    • 2000
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate for cooling of engines. At the same time. the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. The prediction model. which allowed the calculation of acoustic pressure at the blade passing frequency and it's harmonics. has been developed by Farrasat. This theory is founded upon the acoustic radiation of unsteady forces acting on blade. To calculate the unsteady resultant force over the fan blade. Time-Marching Free-Wake Method are used. The fan noise of fan system having unsymmetric engine-room is predicted. In this paper, the discussion is confined to the performance and discrete noise of axial fan and front part of engine room in heavy equipments.

  • PDF

Prediction of Internal Broadband Noise of a Centrifugal Fan Using Stochastic Turbulent Synthetic Model (통계적 난류합성 모델을 이용한 원심홴 내부 광대역 소음 예측)

  • Heo, Seung;Kim, Dae-Hwan;Cheong, Cheol-Ung;Kim, Tae-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1138-1145
    • /
    • 2011
  • The internal broadband noise of a centrifugal fan in a household refrigerator is predicted using hybrid CAA techniques based on stochastic turbulent synthetic model. First, the unsteady flow field around the centrifugal fan is predicted using computational fluid dynamics(CFD) method. Then, the turbulent flow field is synthesized by applying the stochastic turbulent synthetic technique to the predicted flow field. The aerodynamic noise sources of the centrifugal fan are modeled on a basis of the synthesized turbulent field. Finally, the internal broadband noise of the centrifugal fan is predicted using the boundary element method(BEM) and the modeled sources. The predicted noise spectrum is compared with the experimental data. It is found that the predicted result closely follows the experimental data. The proposed method can be used as an effective tool for designing low-noise fans without expensive computational cost required generally for the LES and DNS simulations to resolve the turbulence flow field responsible for the broadband noise.

Development of the Computer Program for Predicting the Aero-acoustic Performance in the Design Process of Axial Flow Fan (축류형 송풍기 설계 과정에서 공력-음향학적 성능 예측을 위한 전산 프로그램의 개발)

  • Chung, Dong-Kyu;Hong, Soon-Seong;Lee, Chan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.91-98
    • /
    • 2000
  • Developed is a computer program for the prediction of the aero-acoustic performance characteristics such as discharge pressure, efficiency, power and noise level in the basic design step of axial flow fan. The flow field and the aerodynamic performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted aerodynamic performances, sound pressure level and noise directivity patterns of fan by the present computer program are favorably compared with the test data of actual fan. Furthermore, the present computer program is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level and in analyzing their design sensitivities.

  • PDF

The Influence of the Intake Regions of the Cross-flow fan on the Performance and Fan Noise (횡류팬 흡입구의 위치가 성능 및 소음 특성에 미치는 영향)

  • Kim, Jin Baek;Choi, Weon Seok;Lee, Jai Kwon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.78-82
    • /
    • 2004
  • The cross-flow fan which is used for air-conditioner indoor units were studied experimentally. The recent trend shows that the room air-conditioners need to be good-looking. According to the visual design concepts the intake regions of the fan can vary, which leads to the loss of the performance and the increase of the noise of the fan. In order to optimize the performance of the fan and minimize the aerodynamic noise for the system, the performance characteristics and the noise of the cross-flow fan have been investigated at the various conditions of the intake region of the unit.

  • PDF

A Study on the Noise Emission Characteristics of Turbo Axial Flow Fan by Experimental Method (터보형송풍기의 소음 방사특성에 관한 실험적 연구)

  • 김동규;백종진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.271-277
    • /
    • 2003
  • Recently as the environmental noise getting influential social problem, it is the fact that the demand on noise reduction increases with the advance of the standard of living. Therefore increasing the interest on the noise in common, it is eagerly demanded that the endeavour for reducing the noise of the rotating machinery, especially the machinery related a flowing including the household electric products, which is pointed out the primary noise source in environment. As proceeding study for fan noise, theory of fan noise property is arranged and this control method is shown. Blade passage noise of total noise spectrum. Thus in the aspect of noise reduction, noise source and identification of noise radiation characteristics of axial flow fan are demanded in detail. The sound source is analyzed by using sound pressure and sound intensity. In that time, synchronization of axial flow fan using optical sensor is executed, and to identify the location of exact noise source in the fan profile determination of recording time is proposed. In the rotating of tan, it is explained that the location of noise source exists in and by the directivity, the noise radiation pattern of axial flow fan is determined and the flow of sound is visualized in the figure of contour mapping.

  • PDF

Prediction of internal broadband noise of a centrifugal fan using stochastic turbulent synthetic model (통계적난류합성모델을 이용한 원심홴 내부 광대역 소음 예측)

  • Heo, Seung;Kim, Dae-Hwan;Cheong, Cheol-Ung;Kim, Tae-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.627-632
    • /
    • 2011
  • The internal broadband noise of a centrifugal fan in a household refrigerator is predicted by using hybrid CAA technique based on stochastic turbulent synthetic model. First, the unsteady flow field around the centrifugal fan is predicted using Computational Fluid Dynamics (CFD) method. Then, the turbulent flow field is synthesized by applying the stochastic turbulent synthetic technique to the predicted flow field. The aerodynamic noise sources of the centrifugal fan are modeled on a basis of the synthesized turbulent field. Finally, the broadband noise of the centrifugal fan is predicted using Boundary Element Method (BEM) and the modeled sources. The predicted result is compared with the experimental data. It is found that the predicted result closely follows the experimental data. The proposed method can be used as an effective tool for designing low-noise fans without expensive computational cost required generally for the LES and DNS simulations to resolve the turbulence flow field responsible for the broadband noise.

  • PDF

Development and Analysis on Noise Characteristics of Low Noise Cooling Fan for an Alternator by Using Numerical Method (수치적 방법을 이용한 저소음 얼터네이터 냉각팬의 개발 및 소음 특성 분석)

  • Kim, Wook;Jeon, Wan-Ho;Hyun, Jae-Jin;Lim, Chul-Koo;Lee, Sung-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.608-609
    • /
    • 2008
  • An alternator which converts mechanical rotating energy into electric energy is an important component of a vehicle. It operates in broad range from 3000 RPM to 18000 RPM. So, sufficient flow rate and low noise are needed in such broad operating range for a cooling fan of this alternator. In current study, the cooling fan of an alternator is developed through DFSS process and numerical analysis. In order to calculate flow rate and noise level, SC/Tetra and FlowNoise S/W are used respectively, for a new developed fan, compared with original model, numerical result shows 3 dBA reduction and measured value shows 4 dBA reduction.

  • PDF

A development of design, performance and flow.noise analysis program (축류홴 설계, 성능, 유동/소음 해석 프로그램 개발)

  • KIM, C. J.;Baek, S. J.;Jeon, W. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.43-47
    • /
    • 2001
  • A program to design an axial flow fan, analyze the performance and predict the noise was developed. In order to develop the low noise fan, that program is compulsory. This software is composed of three parts : the geometric design module, the performance analysis module, the fan noise prediction module. In order to analyze the performance, three dimensional vortex panel method is used. The unsteady flow field was analyzed by time-marching free wake method. The unsteady force data is then used in predicting the noise. Farassat's equation is used to predict the noise of fan.

  • PDF

Estimation of Noise Level near Cross Bow Fan by Measurements of Static Pressure. (정압을 이용한 직교류팬 주변의 소음 예측)

  • Kim, Jae-Won;Cho, Yong;Jung, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1156-1161
    • /
    • 2001
  • A significant trial has been performed for estimation of noise level of a cross flow fan for air conditioning system. In general, measurements of noise level of machinery require rigorous equipment involving an anechoic chamber with precision gauges. The apparatus is expensive to utilize and is not easy to construct. In this work, we adopt static pressure sensing from an ordinary pressure transducer for prediction of noise level of a rotating fan. The present procedure is finding sound pressure from the static pressure by manipulating Light-Curle equation depicts noisy energy in terms of pressure on surfaces of noise generators. Sound power level near core unit of the fan is evaluated with the present methodology in a normal laboratory room without any sound absorbers. The method is easy and shows good prediction results compared with precise measurements by using microphones.

  • PDF

Noise Radiation Analysis of the Cooling Fan in a Heavy Equipment (중장비 팬의 엔진룸을 통한 소음방사 해석)

  • 정기훈;전완호;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.954-960
    • /
    • 2001
  • Axial fans are widely used in heavy machines due to their ability to produce high cooling of engines. At the same time. the noise generated by these fans causes or serious problems. This work is concerned with the low noise technique of discrete. The prediction model. which allowed the calculation of acoustic pressure at the frequency and it's harmonics, has been developed by Farrasat and the Helmholtz-Kir. The newly developed Helmholtz-Kirchhoff BEM for thin body is used to calculate the sound field of the fan that is located in a engine room. To calculate the unsteady resultant force over blade. Time-Marching Free-Wake Method are used. The fan noise of fan sys unsymmetric engine-room is predicted. In this paper. the discussion is confined to and discrete noise of axial fan and front Part of engine room in heavy equipments.

  • PDF