• Title/Summary/Keyword: Fan Efficiency

Search Result 439, Processing Time 0.023 seconds

Integrated Process for Development of an Optimal Axial Flow Fan (Design, RP, Measurement, Injection Molding, Assembly) (최적 축류팬 개발을 위한 통합공정 (설계, 시제품제작, 측정, 금형가공, 사출, 조립))

  • 박성관;최동규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.201-209
    • /
    • 1998
  • To develop timely an optimal fan, a design system and a new manufacturing process used step by step have to be integrated. A small sized optimal fan for refrigerators, that was the goal on this project, was developed by the following principal processes. All processes are technologically linked in many directions: The existing fan was measured through reverse engineering. The measured data was used for the basic source of 3D design. The performance tests were carried and used as the data for the evaluation of the existing fan. Flow analysis by FANS-3D/sup [1]/ was performed at the given information (pressure drop and flow rate) to find out the configuration of optimal fan design. The flow patterns were investigated to measure the performance of fan through numerical experiment. The grid point data obtained by the above analysis turned into 3D high efficiency fan model by using CATIA. The product was manufactured by RP process (SLS, SLA) and tested the characteristic curves of the developed fan to compare with the existing fan. The modification of fan design were all examined to see any change in performance and checked to find any deficiency in assembling the fan into a duct. After the plastics flow analysis of the injection molding cycle to ensure acceptable quality fan, an optimal mold was processed by using tool-path for the newly designed fan.

  • PDF

The Status of Maintenance of Exhaust Fans and Bag filters in Melting Processes in a foundry industrial complex (주물 공단 용해공정의 송풍기 및 백필터 관리 실태)

  • Kim, Tae Hyeung;Ha, Hyun Chul;Jeoung, Chun Hwa;Seo, Jeoung Yoon;Piao, Cheng Xu;Yang, Jun Ho;Li, Xiaoyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.3
    • /
    • pp.212-223
    • /
    • 2007
  • 18 Local exhaust ventilation systems in 10 melting companies located in an industrial complex were tested to know the status of maintenance. Test items were fan flowrates, fan static pressures, rotational speeds and differential pressures of bag filters. Only 22% of the tested fans has more than 80% flowrate efficiency. 44% of the fans has lower than 60% efficiency. The performance of the fans are not in a good status. For the fans with lower than 60% efficiency, the analysis shows that the lower flowrate might be caused by the degradation of fan performance. On the other hand, for the fan s with higher than 60% efficiency, the main cause of flowrate reduction might be too much pressure losses due to clogging of filter bags. The degradation of fans usually lead the reduction of hood capture efficiency, resulting in the increase of contaminant concentrations in workplace. To keep fans in good status, self inspections should be periodically conducted. This inspection should include the measurements of flowrate and pressures. The most important thing to be performed is the initial test of local exhaust ventilation system because the initial test data should be used to know the level of system degradation.

Performance Characteristics Due to the Inflow Distortion near Hub in an Axial Flow Fan (축류 송풍기 허브측 불균일 유입유동 현상 및 성능 특성)

  • Jang, Choon-Man;Choi, Seung-Man;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.663-669
    • /
    • 2005
  • Performance characteristics of an axial flow fan having distorted inlet flow have been investigated using numerical analysis as well as experiment. Two kinds of hub-cap, round shape and right-angled front shape, are tested to investigate the effect of inlet flow distortion on the fan performance. In case of right-angled front shape, axisymmetric distorted inflow is induced by flow separation at the sharp edge of hub-cap, and the characteristics of the inflow depends on the distance between hub-cap and blade leading edge. Flow analysis of the blade passage is peformed by solving the three-dimensional Reynolds-averaged Navier-Stokes equations. numerical solutions are validated in comparison with experimental data measured by a five-hole probe downstream of the fan rotor. It is found from the numerical results that non-uniform axial inlet velocity profile near the hub results in the change of inlet flowangle. The changed inlet flow angle near the hub invokesa flow separation on the blade surfaces, thus deteriorating the fan efficiency. The effect of the distance between hub-cap and blade leading edge on the efficiency is also discussed.

  • PDF

Flows around crossflow fan (Crossflow Fan 주변의 유동)

  • Kim, Jae-Won;Jung, Yeun-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.678-683
    • /
    • 2001
  • The present work has carried out experimental study on a cross-flow fan system with a simplified vortex wall scroll casing. A cross-flow fan test rig was constructed to obtain pressure rise and volume flow rate for various fan operating conditions. The performance estimation is using a wind tunnel with a motor driven damper for flow rate control and flows are quantitatively visualized by light scattering system with a pulsed laser. Min focus on the visualization is finding a eccentric vortex inside a fan which is a major factor reducing fan efficiency. Comprehensive engineering data are prepared for industrial applications and show a good agreement with a prior work by experimental measurements.

  • PDF

Design of An Axial Flow Fan with Shape Optimization (형상 최적화를 통한 축류송풍기의 설계)

  • Seo Seoung-Jin;Choi Seung-Man;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.603-611
    • /
    • 2006
  • This paper presents the response surface optimization method using three-dimensional Wavier-Stokes analysis to optimize the blade shape of an axial flow fan. Reynolds-averaged Wavier-Stokes equations with $k-{\epsilon}$ turbulence model are discretized with finite volume approximations using the unstructured grid. Regression analysis is used for generating response surface, and it is validated by ANOVA and t-statistics. Four geometric variables, i.e., sweep and lean angles at mean and tip respectively were employed to improve the efficiency. The computational results are compared with experimental data and the comparisons show generally good agreements. As a main result of the optimization, the total efficiency was successfully improved. Also, detailed effects of sweep and lean on the axial flow fan are discussed.

A Computerized Axial Flow Fan Design System for Noise and Performance Analysis (성능 및 소음 해석 기능이 수반된 전산화된 축류 송풍기 설계 체제)

  • Chung, Dong-Kyu;Noh, Jun-Gu;Seo, Jae-Young;Lee, Chan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.37-42
    • /
    • 2001
  • A computerized axial flow fan design system is developed with the capabilities for predicting the aerodynamic performance and the noise characteristics of fan. In the present study, the basic fan blading design is made by combining vortex distribution scheme with camber line design, airfoil selection, blade thickness distribution and stacking of blade elements. With the designed fan blade geometry, the through-flow field and the performance of fan are analyzed by using the streamline curvature computing scheme with spanwise total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuation induced by wake vortices of fan blades and to radiate as dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted performances, sound pressure level and noise directivity patterns of fan by the present method are favorably compared with the test data of actual fans. Furthermore, the present method is shown to be very useful in designing the blade geometry of new fan and optimizing design variables of the fan to achieve higher efficiency and lower noise level.

  • PDF

A Study on the Flow Characteristics in Computer Case by Crossflow Fan. (Crossflow fan에 의한 컴퓨터 케이스 내부의 유동특성에 관한 연구)

  • Lee, Haeng-Nam;Park, Gil-Moon;Jung, Hann-Byul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.730-736
    • /
    • 2008
  • The purpose of this study is to find out a flow characteristics when a crossflow-fan is installed inside the computer case and to provide information about the preliminary data of cooling efficiency of CPU and a flow inside and outside of a computer case. Under the condition of operating the fan inside the experimental duct we changed the position of a installation of the slot, and the experiment measured with PIV and the results are as follows. Under the influence of the crossflow-fan installed to the air discharging side, mean velocity between 35 to 45 on the point 80 of the Slot 0.2.3 of the case increased and it influences discharging the air inside of the computer case. On the left-upper end. which isn't directly influenced by the suction-discharging fan installed inside the PC, a flow occurs caused by vortex due to the Sirocco-Fan and Slot installed on the center of the right side. We can see that a flow distribution increases when the Sirocco-Fan operates and a whirl appears stronger between the slot and the suction fan. It is thought that this phenomenon is influenced by a flow while it is on the way of entering from the suction-fan and going out to the discharging-fan.

A Study on efficiency improvement of BLDC motor for radiator cooling fan (자동차 Cooling Fan용 고효율 BLDC모터의 호율개선에 대한 연구)

  • Ahn, Young-Il;Park, Chang-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.44-46
    • /
    • 2003
  • Nowaday it is trend to be one cooling radiator and cooling fan from separate engine radiator and air condition radiator in cars. For the cooling fan is developed a electrical motor which is limited in size. The motor should be working in silence and have no electromagnetic Problem and high efficiency. In this paper will be proposed some parameters for improvement of the efficiency of a BLDC motor which is developed for the cooling system after theoretical and experimental investigation.

  • PDF

A Study on High Efficiency Flux Switching Motor drive (플럭스 스위칭 전동기의 고효율 드라이브에 대한 연구)

  • Min, Byeng-Jae;Kim, Dong-Hee;Koo, Bon-Sam;Choi, Keyng-Ho;Kim, Nam-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.92-100
    • /
    • 2010
  • A new class of electronically commutated brushless motor, the flux-switching motor(FSM) is gradually emerging in power tools and household appliances especially fan and pump application because of green policy. This motor offers advantages of high-power density and relatively high efficiency compare with induction motor, low cost and simple motor structure compare with bldc motor. This paper presents the principle of the FSM and design of the 12/6 pole FSM drive system for fan application. Finally, test results of the prototype motor are provided to verify a validity of the fan application with TMS320F2812 DSP and inverter.

Experimental Study on the Aerodynamic Characteristics of a Counter-Rotating Axial Fan (엇회전식 축류홴의 공력 특성에 관한 실험적 연구)

  • Choi, Jin-Yong;Cho, Lee-Sang;Cho, Jin-Soo;Won, Eu-Pil
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.441-446
    • /
    • 2000
  • The experiments of the Aerodynamic characteristics of a counter-rotating axial fan were carried out. The performance tests of a single and a counter-rotating axial fan were carried out based on the Korean Standard Testing Methods for Turbo-fans and Blowers(KS B 6311). The performances of single and counter-rotating axial fans were obtained and compared with each other. The flow fields of a counter-rotating axial fan at the peak efficiency point were measured using a five-hole probe. As a result, compared with the performance of a single-rotating axial fan, that of a counter-rotating axial fan was superior. And it is confirmed that most of the swirl flow generated by the front rotor was eliminated by the rear rotor.

  • PDF