• Title/Summary/Keyword: Fan Efficiency

Search Result 439, Processing Time 0.024 seconds

Employing rotating vaneless diffuser to enhance the performance of plenum fan

  • Dou, Hua-Shu;Wu, Lin;Wei, Yikun;Chen, Yongning;Cao, Wenbin;Ying, Cunlie
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Numerical simulation is carried out for flow characteristics in a plenum fan and the influence of the diameter ratio of the rotating vaneless diffuser on the performance of plenum fan is analyzed. The diameter ratio of the rotating vaneless diffuser employed is from 1.03 to 1.3. The research results show that the rotating vaneless diffuser is able to enhance the performance of plenum fan. It is found that there is significant improvement in static pressure and efficiency at the diameter ratio of 1.05 at high flow coefficients, while the optimal diameter ratio is 1.2 at rated and low flow coefficient.

Heat Sink Design Optimization using Genetic Algorithm (Genetic Algorithm을 활용한 Heat Sink 최적 설계)

  • Kim, Won Gon
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.500-509
    • /
    • 2015
  • This paper presents the single objective design optimization of plate-fin heat sink equipped with fan cooling system using Genetic Algorithm. The proper heat sink and fan model are selected based on the previous studies. And the thermal resistance of heat sinks and fan efficiency during operation are calculated according to specific design parameters. The objective function is combination of thermal resistance and fan efficiency which have been taken to measure the performance of the heat sink. And Decision making procedure is suggested considering life time of semiconductor and Fan Operating cost. And also Analytical Model used for optimization is validated by Fluent, Ansys 13.0 and this model give a quite reasonable and reliable design.

  • PDF

Genetic Algorithm을 활용한 Heat Sink 최적 설계

  • Kim, Won-Gon
    • CDE review
    • /
    • v.21 no.2
    • /
    • pp.39-49
    • /
    • 2015
  • This paper presents the single objective design optimization of plate-fin heat sink equipped with fan cooling system using Genetic Algorithm. The proper heat sink and fan model are selected based on the previous studies. And the thermal resistance of heat sinks and fan efficiency during operation are calculated according to specific design parameters. The objective function is combination of thermal resistance and fan efficiency which have been taken to measure the performance of the heat sink. And Decision making procedure is suggested considering life time of semiconductor and Fan Operating cost. And also Analytical Model used for optimization is validated by Fluent, Ansys 13.0 and this model give a quite reasonable and reliable design.

  • PDF

A study on Low-Noise and High-Efficiency Sirocco Fan Development (저소음 고효율 시로코 홴 개발에 관한 연구)

  • Park, Kwang-Jin;Lee, Sang-Hwan;Son, Byung-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.46-56
    • /
    • 1999
  • This study is on the performance prediction and design of a sirocco fan. Slip coefficient is very important factor for the performance analysis of a centrifugal-type fan. Because generally used slip coefficient equations of backward curved centrifugal fan are not appropriate for forward curved sirocco fan, in this study a proper slip coefficient equation for a sirocco fan is suggested. Using this equation performance prediction program for sirocco fan is composed of and also included the total noise prediction that include the turbulent noise at the fan inlet and boundary layer noise. A comparison between the values obtained from performance prediction program and experimental values shows that the program predicts the sirocco fan performance in a practical rate.

  • PDF

A study on low-noise and high-efficiency sirocco fan development (저소음 고효율 시로코 팬 개발에 관한 연구)

  • Park, K.J.;Lee, S.H.;Son, B.J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.02a
    • /
    • pp.63-72
    • /
    • 1998
  • This study Is on the performance prediction and design of sirocco fan. Slip coefficient is very important factor for the performance analysis of centrifugal-type fan. Because generally used slip coefficient equations of backward curved centrifugal fan are not appropriate for forward curved sirocco fan, in this study a proper slip coefficient equation for sirocco fan is suggested. Using this equation performance prediction program for sirocco fan is composed and also included the total noise prediction that include turbulent noise at the fan Inlet and boundary layer noise. A comparison between the values obtained from performance prediction program and experimental values shows that the program predicts the sirocco fan performance in a practical rate.

  • PDF

A Numerical Method & Experiments for the Aerodynamic Design of High Performance 2-Stage Axial Flow Fans (고성능 2단 축류송풍기의 공력설계를 위한 수치해석 및 실험에 관한 연구)

  • Cho, Jinsoo;Han, Cheolhui;Cho, Leesang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1048-1062
    • /
    • 1999
  • A numerical method and experiments for the aerodynamic design of high performance two-stage axial flow fans was carried out. A vortex ring element method used for the aerodynamic analysis of the propellers was extended to the fan-duct system. Fan Performance and velocity profiles at the fan inlet and outlet are compared with experimental data for the validations of numerical method. Performance test was done based on KS B 6311(testing methods for turbo-fans and blowers). The velocity profile was obtained using a 5-hole pitot tube by the non-nulling method. The two stage axial flow fan configurations for the optimal operation conditions were set by using the experimental results for the single rotating axial flow fan and the single stage axial flow fan. The single rotating axial flow fan showed relatively low efficiency due to the swirl velocities behind rotor exit which produced pressure losses. In contrast, the single stage and the two-stage axial flow fans showed performance improvements due to the swirl velocity reduction by the stator. The peak efficiency of the two stage axial flow fan was improved by 21% and 6%, compared to the single rotating axial flow fan and the single stage axial flow fan, respectively.

A STUDY ON AERODYNAMIC CHARACTERISTICS DEPENDING ON SHAPE OF AN INTERNAL MOTOR IN A SIROCCO FAN FOR RESIDENTIAL VENTILATION (주거환기용 시로코홴의 내부모터 형상에 따른 공력특성 연구)

  • Cha, K.H.;Kim, J.H.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • Aerodynamic characteristics depending on the shape of an internal motor in a small-size sirocco fan for residential ventilation have been investigated. For the aerodynamic analyses of the sirocco fan, three-dimensional Reynolds-averaged Navier-Stokes equations are solved with the shear stress transport model for turbulence closure. The flow analyses are performed on hexahedral grids using a finite-volume solver. The validation of the numerical results at steady-state is performed by comparing with experimental data for the pressure and efficiency. In order to investigate the aerodynamic characteristics depending on shape of an internal motor in a sirocco fan, the reference shape is analyzed compared to the case without internal motor. Additionally, two shape parameters, height and width of the internal motor in a sirocco fan, are tested to investigate their effects on the aerodynamic characteristics. The results show that the shape of the internal motor in a sirocco fan is an important factor to improve the aerodynamic performances.

A STUDY ON AERODYNAMIC CHARACTERISTICS DEPENDING ON SHAPE OF AN INTERNAL MOTOR IN A SIROCCO FAN FOR RESIDENTIAL VENTILATION (주거환기용 시로코홴의 내부모터 형상에 따른 공력특성 연구)

  • Cha, K.H.;Kim, J.H.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.321-326
    • /
    • 2011
  • Aerodynamic characteristics depending on the shape of an internal motor in a small-size sirocco fan for residential ventilation have been investigated For the aerodynamic analyses of the sirocco fan, three-dimensional Reynolds-averaged Navier-Stokes equations are solved with the shear stress transport model for turbulence closure. The flaw analyses are performed on hexahedral grids using a finite-volume solver. The validation of the numerical results at steady-state is performed by comparing with experimental data for the pressure and efficiency. In order to investigate the aerodynamic characteristics depending on shape of an internal motor in a sirocco fan, the reference shape is analyzed compared to the case without internal motor. Additionally, two shape parameters, height and width of the internal motor in a sirocco fan, are tested to investigate their effects on the aerodynamic characteristics. The results show that the shape of the internal motor in a sirocco fan is an important factor to improve the aerodynamic performances.

  • PDF

Study on the Aerodynamic Performance of a Cross-Flow Fan for the Various Design Factors of an Indoor Room Air-Conditioner (룸에어콘 실내기의 설계인자 변화에 따른 관류홴의 공력성능 연구)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.33-38
    • /
    • 2005
  • The aerodynamic performance of a cross-flow fan is strongly influenced by the various design factors of a rear-guider and a stabilizer. The purpose of this paper is to investigate the effects of a rear-guider and a stabilizer on the aerodynamic performance of a cross-flow fan. The design factors considered in this paper are a rear-guider clearance, a stabilizer clearance, and a stabilizer setup angle, respectively. This experiment was carried out with a constant revolution number of 700 rpm in a cross-flow fan installed in the fan tester. The static pressure, flowrate, torque, and revolution number were measured in this paper. Also, the pressure coefficient and the efficiency were analysed according to the various assembly conditions using a stabilizer setup angle, a stabilizer clearance, and a rear-guider clearance in the indoor room air-conditioner.

  • PDF

Enhancement of combustion efficiency of a air-cooled combustor system with single F.D. Fan Using CFD (전산유체역학을 이용한 단일 송풍기가 적용된 공냉식 연소설비의 효율개선)

  • Kim, Min-Choul;Shon, Byung-Hyun;Lee, Jae-Jeong;Park, Hung-Suck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.460-468
    • /
    • 2021
  • This study investigated the enhanced combustion efficiency of an "air-cooled combustion system" with single F.D. fan, and performed a numerical analysis for the operation and design conditions to increase the combustion efficiency. The combustion efficiency in an actual combustor was compared before and after the structure modification. Numerical analysis for application of a single fan revealed the difficulty of forming a turbulence for circular combustion conditions. This is because the supply ratio of combustion air supplied into 2 flow paths becomes irregular in the combustion furnace due to a change in friction force and pressure in each flow path. Subsequently, two methods of supplying air into the combustion furnace were analyzed numerically to obtain the optimal combustion conditions of an air-cooled combustion system. The first method involved injecting the preheated combustion air after a 180~360 degree rotation from the outer wall, whereas in the second method, the combustion air was injected into the combustion furnace in a tangential direction after primary heat exchange outside the combustion furnace, by applying a rotatable vane structure in the combustion furnace. Results reveal that application of a single F.D. fan to the air injection into a rotatable combustion furnace is desirable for optimization of the combustion conditions for applying a duct structure having a dual cooling wall for the cooling of the outer wall of the combustion furnace, and for maintaining perfect mixing in the combustion furnace. We therefore confirmed enhanced combustion efficiency by comparing the actual combustion efficiency before and after structure modification.