• Title/Summary/Keyword: Fan Blade

Search Result 358, Processing Time 0.023 seconds

Fabrication and evaluation of a piezoelectric fan (압전팬의 제작과 평가)

  • Kim, Dae-Young;Choi, Jae-Eup;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.693-696
    • /
    • 2003
  • Piezoelectric ceramics were made by a doctor blade methode and piezoelectric fans were fabricated by sandwiched a slim and long metal between two layers of ceramics. A maximum displacement of piezoelectric fan occurs in the resonance frequency of a long metal and the resonance frequency of them is in inverse proportion to the square of a length of metal. The piezoelectric fan made from a wide and thin piezoelectric ceramics($13{\times}0.2{\times}30mm^3$) showed a maximum displacement in all samples, and the maximum displacement was about 20mm in a commercial power (200V, 60Hz of sine wave).

  • PDF

Optimum Design of a Cross Flow Fan

  • Kim Dong-Hoon;Park Hyung-Koo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.260-262
    • /
    • 2003
  • Cross-flow fans are widely used in various applications, due to their large capacity of mass flow and size compactness. The flow field of the cross-flow fan is, however, complex and has many design parameters. Thus, the general design guide has not been sufficiently established yet and the design strategies of cross-flow fans have been based on experiments. In the present study, the performance and their two-dimensional flow characteristics are numerically analyzed by using the STAR-CD(commercial computational fluid dynamics code). The simulation is done by varying the several design parameters such as the impeller blade shapes and the gap between the stabilizer and impeller. The computational results are compared with the experimental data at the fan outlet region. Finally some helpful guides for the optimum design of cross-flow fans are proposed.

  • PDF

Analysis on Performance and Noise Characteristics of the Design Parameters of a Cross-Flow Fan and its Optimization (횡류홴 설계 인자들의 성능/소음 특성 해석 및 최적화)

  • Cho Yong;Moon Young J.;Kwak Jiho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.767-770
    • /
    • 2002
  • The performance and noise characteristics of the design parameters of a cross-flow fan are investigated by computational methods. The incompressible Wavier-Stokes equations in moving coordinates are time-accurately solved for obtaining the pressure fluctuations due to the aerodynamic interactions between the impeller blades and the stabilizer, and sound pressure is then computed by the Ffowcs Williams-Hawkings equation. Design parameters of the cross-flow fan include blade setting angle, exit-diffusion angle, and stabilizer installation angle. Also, an optimization of the aforementioned design parameters has been peformed using the Taguchi method.

  • PDF

Flow Field Analysis of a Centrifugal Fan (원심형 홴의 유동해석에 관한 연구)

  • Shin, Dong-Shin;Im, Jong-Soo;Kim, Chang-Seong;Rho, O-Hyun;Lee, Soo-Gab
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.43-49
    • /
    • 1999
  • Flow field and near-field noise of a centrifugal fan has been studied with an efficient compressible method and STAR-CD. The flow field of the centrifugal fan is assumed to be two-dimensional. Most of the compressible studies have been done by inviscid solver because viscous simulation shows little difference. The near field noise is estimated in terms of sound pressure level in frequency domain transformed from the computed pressure fluctuations using FFT. The simulation has been done on various design elements such as impeller blade shapes, the number of blades and cut-off clearance. The comparison shows that the number of blades has a significant effect on near-field noise without losing aerodynamic performance.

  • PDF

Improvement of Aerodynamic Efficiency of Supersonic Stage by the Modification of Hub Flowpath Shape (허브면 형상의 변경을 통한 초음속 압축단의 공력효율 개선)

  • Park, Kicheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.227-233
    • /
    • 2002
  • It is common for highly loaded supersonic stage to have very high relative inlet Mach number. To get this level of inlet Mach number, rotor blade outer diameter or rotational speed should be increased. In the case of commercial turbo-fan engine, it is preferred to make the rotor blade outer diameter large than increasing the rotational speed. But, for multi-stage fan of military engines, overall diameter is often restricted and they are apt to increase the rotational speed. With high rotational speed, relative inlet Mach number is likely to be well supersonic over the entire rotor blade span and the characteristic of the stage is affected with meridional shape of the stage, especially at near hub or tip. In this paper, the aerodynamic performance of two different hub surface shape is compared and it's merit and demerits were discussed.

  • PDF

Cooling Performance of PC cooling Fan For Various Cooling Fan Blade numbers and Design Shapes (PC용 냉각팬의 형상 및 블레이드의 수 변화에 따른 냉각성능)

  • Park, Won-Keol;Lee, Dong-Ryul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.685-689
    • /
    • 2012
  • 본 연구는 PC용 냉각팬의 효율적인 설계를 위하여 냉각팬의 형상 변경 및 블레이드의 수 변화를 통해서 PC 부품 발열체의 온도변화를 수치해석적으로 수행하였다. 기존의 냉각팬 형상을 기준으로 블레이드의 수를 변화시키고 실제 형상을 변경한 냉각팬을 동일한 설계 입력조건를 적용하여 비교 분석하여 냉각성능을 파악하였다. 두 Case를 비교한 결과 기존 형상은 블레이드의 수가 증가 할수록 냉각효과가 커졌고, 형상을 변경한 냉각팬의 경우 Blade 6에서 가장 큰 냉각 효과를 보였다. 그리고 Blade 6과 8을 비교해 봤을 때 두 블레이드 사이에서 온도차이는 미소한차이로 냉각효과를 비교하기 어려웠다. 두 Case에서 제작과정과 비용을 비교해 보았을 때 Case 2의 Blade 6 경우가 더 우수한 것으로 보아 형상을 변경한 블레이드에서 최적설계를 얻을 수가 있었다.

  • PDF

Experimental Study of Trailing Edge Shape of Forward Curved Blade upon Radiated Noise (원심 전향익 송풍기 날개 후단의 형상에 따른 소음 분석)

  • KIM, H.-J.;JUNG, K.-H.;LEE, C.-J.;LEE, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.137-142
    • /
    • 2000
  • The turbulent broadband sound power from a forward curved bladed fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation, and boundary layer on the blade. This paper reports the effects of the solidity (C/s) and the stagger angles upon the trailing edge noise with respect to the trailing edge shapes of circular-arc cambered blade of multi-bladed fan, and discusses the major physical mechanism of reduced noise lot the circular trailing-edged case.

  • PDF

A Study on Trailing Edge Noise from a Blade Cascade in a Uniform Flow (케스케이드 날개 후단소음 특성에 관한 연구)

  • J. M. Son;Kim, H. K.;Lee, S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.366.1-366
    • /
    • 2002
  • It is addressed that the turbulent broadband sound power from a sirocco fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation, and boundary layer on the blade. The design parameters such as solidity(c/s) and stagger angle are specified to predict performance and noise level because the separation and slip velocity are strong1y affected by them along with the flow coefficient. (omitted)

  • PDF

An Alysis of Flow and Noise Source for Vacuum Cleaner Centrigugal Fan (진공청소기 원심홴의 유동과 소음원 해석)

  • 전완호;유기완;이덕주;이승갑
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 1997
  • Centrigugal fans are widely used due to their ability to achieve relatively high pressure ratios in a short axial distance compared to axial fans. Because of their widespread use, the noise generated by these machines causes one of serious problems. In general, centrigugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the periodic flow discharged radially from the impeller and the stator blades or the cutoff. But in vacuum cleaner fan the noise is dominated by not only the discrete tones of BPF but also broadband frequencies. In this study we investigate the mechanism of broadband noise and predict for the unsteady flow field and the acoustic pressure field associated with the centrifugal fan. DVM(discrete vortex method) is used to calculates the flow field and the Lowson's method is used to predict the acoustic pressures. From the results we find that the broadband noise of a circular casing centrifugal fan is due to the unsteady force fluctuation around the impeller blades related to the vortex shedding. The unsteady forces associated with the shed vortices at impeller and related to the interactions to the diffuser and the exit.

  • PDF