• 제목/요약/키워드: False-alarm rate

검색결과 272건 처리시간 0.02초

A Novel Network Anomaly Detection Method based on Data Balancing and Recursive Feature Addition

  • Liu, Xinqian;Ren, Jiadong;He, Haitao;Wang, Qian;Sun, Shengting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.3093-3115
    • /
    • 2020
  • Network anomaly detection system plays an essential role in detecting network anomaly and ensuring network security. Anomaly detection system based machine learning has become an increasingly popular solution. However, due to the unbalance and high-dimension characteristics of network traffic, the existing methods unable to achieve the excellent performance of high accuracy and low false alarm rate. To address this problem, a new network anomaly detection method based on data balancing and recursive feature addition is proposed. Firstly, data balancing algorithm based on improved KNN outlier detection is designed to select part respective data on each category. Combination optimization about parameters of improved KNN outlier detection is implemented by genetic algorithm. Next, recursive feature addition algorithm based on correlation analysis is proposed to select effective features, in which a cross contingency test is utilized to analyze correlation and obtain a features subset with a strong correlation. Then, random forests model is as the classification model to detection anomaly. Finally, the proposed algorithm is evaluated on benchmark datasets KDD Cup 1999 and UNSW_NB15. The result illustrates the proposed strategies enhance accuracy and recall, and decrease the false alarm rate. Compared with other algorithms, this algorithm still achieves significant effects, especially recall in the small category.

이동 물체 탐지를 위한 자기센서 응용 신호처리 기법 (Light-weight Signal Processing Method for Detection of Moving Object based on Magnetometer Applications)

  • 김기태;곽철현;홍상기;박상준;김건욱
    • 대한전자공학회논문지SP
    • /
    • 제46권6호
    • /
    • pp.153-162
    • /
    • 2009
  • 본 논문에서는 이동 금속 물체 탐지 목적의 무선 센서네트워크 응용 시스템에 이용 가능한 저연산, 저전력 소모를 목적으로 하는 간결한 신호처리 알고리즘을 제안한다. 일반적 센서노드에 주로 사용되는 자기센서의 물리적 특성을 분석하고 Exponential Average method(EA)를 사용하여 시간 영역에서 실시간으로 센서 신호를 처리한다. EA를 사용하여 잡음, 시간, 온도에 따른 자기장 변화, 외부 간섭에 강인하면서 임베디드 프로세서에 적합한 적은 메모리소모와 연산량을 가진다. 또한 통계적 분석을 통해 제안하는 알고리즘의 최적화된 파라미터 값을 도출하고 적용하였다. 보편적으로 사용되는 자기 센서 모델의 시뮬레이션 결과 5%의 오경보 확률에서 90%이상의 이동 물체를 탐지할 수 있었다. 그리고 직접 제작한 센서 노드의 모델링 및 이를 이용한 시뮬레이션과 외부 실험의 결과 60~70% 이상의 탐지 확률을 확인하였다.

적외선 영상 시퀀스에서 시간적 프로파일 기반의 외적을 사용한 소형 표적 검출 (Small Target Detection Using Cross Product Based on Temporal Profile in Infrared Image Sequences)

  • 김병익;배태욱;김영춘;안상호;김덕규
    • 한국통신학회논문지
    • /
    • 제35권1C호
    • /
    • pp.8-16
    • /
    • 2010
  • 본 논문은 적외선 영상 시퀀스 (infrared image sequences)에서 시간적 프로파일 (temporal profile)을 기반으로 한 시간적 화소 (temporal pixel)들의 외적 (cross product)을 사용한 새로운 소형 표적 검출 방법을 제안한다. 소형 표적 및 그 주변배경은 시간적 특성이 서로 다르므로, 시간적 프로파일에서 화소들의 외적을 사용한 가설검증을 통하여 표적 화소 및 배경화소를 구분하고, 그 결과를 기반으로 시간적 배경 (temporal background)을 예측한다. 소형 표적은 원 시간적 프로파일과 예측된 시간적 배경 프로파일의 차에 의해 검출한다. 기존 방법과 제안한 방법의 성능 비교를 위하여, ROC (receiver operating characteristics) 곡선을 실험에서 사용하였다. 실험결과에서 제안된 방법이 기존방법들보다 오경보율 (false alarm rate)이 낮고, 표적 및 배경에 대한 향상된 식별력을 가짐을 확인하였다.

클러터 환경을 고려한 효과적 소형 무인기 탐지에 관한 연구 (Efficient Detection of Small Unmanned Aerial Vehicles in Cluttered Environment)

  • 최재호;강기봉;선선구;이정수;조병래;김경태
    • 한국전자파학회논문지
    • /
    • 제30권5호
    • /
    • pp.389-398
    • /
    • 2019
  • 본 논문에서는 실제 환경을 고려하여 비행 중인 소형 무인기를 탐지할 수 있는 기법을 제안한다. 소형 무인기는 일반적으로 시가지 혹은 산악 지형 내에서 저고도 비행을 수행하므로 클러터(clutter)에 의해 자주 가려지게 된다. 따라서 우수한 탐지 성능 획득을 위해서는 잡음뿐만 아니라, 클러터를 고려한 탐지가 필수적이며, 각각의 클러터 제거 기법에 따른 성능 분석이 요구된다. 제안된 탐지 과정은 클러터 제거 기법 및 펄스 합성 기법을 통해 클러터 및 잡음을 억제한 후, CFAR 검출기를 통해 소형 무인기 탐지를 수행한다. 이때, 3가지 클러터 제거 기법을 적용한 후, 각 기법에 따른 소형 무인기 탐지 성능을 분석한다. 실제 야외 환경에서의 실험을 통한 측정 데이터(data)를 토대로 소형 무인기 탐지에 적합한 클러터 제거 기법을 도출할 수 있었다.

OFDM 레이다를 위한 딥러닝 기반 표적의 거리 및 속도 추정 기법 (Deep learning-based target distance and velocity estimation technique for OFDM radars)

  • 최재웅;정의림
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.104-113
    • /
    • 2022
  • 본 논문에서는 OFDM 레이다를 위한 딥러닝 기반 표적의 거리 및 속도 추정 기법을 제안한다. 제안하는 기법은 표적으로부터 반사된 수신 신호를 받아 변조신호 제거 후 2차원 FFT를 통해 2차원 주기도를 얻는다. 주기도는 기존 및 제안 방법에서 표적의 거리 및 속도를 추정하는 입력신호이다. 주기도에서 정점은 표적의 위치를 나타내는데 표적의 거리 및 속도 추정을 위해 널리 사용되는 기존 기법은 CFAR (Constant False Alarm Rate) 알고리즘이다. 반면 제안하는 기법은 다중 출력 CNN (Convolutional Neural Network)을 이용하여 거리 및 속도를 추정한다. 기존 기법과 달리 제안 기법은 주기도 이외에 잡음 전력과 같이 추가적인 정보가 필요하지 않아 사용하기 편리하다. 컴퓨터 시뮬레이션 결과에 따르면 제안 추정 기법은 기존 기법보다 거리 및 속도 추정 MSE (Mean Square Error)오차 성능을 5배 이상 개선하며 송신 OFDM 심볼 개수가 증가할수록 정확도가 향상되는 특성을 보인다.

선형 예측 분석 기반의 딱총 새우 잡음 검출 기법 (Linear prediction analysis-based method for detecting snapping shrimp noise)

  • 박진욱;홍정표
    • 한국음향학회지
    • /
    • 제42권3호
    • /
    • pp.262-269
    • /
    • 2023
  • 본 논문에서는 선형 예측 분석을 기반으로 한 딱총새우 잡음 검출을 위한 특징을 제안한다. 딱총새우는 천해에 서식하는 종으로, 높은 진폭의 신호를 생성하고 빈번하게 발생하기 때문에 수중 잡음의 주된 원인 중 하나이다. 제안된 특징은 딱총새우 잡음이 갑작스럽게 발생하고 빠르게 소멸하는 특징을 활용하기 위해 선형 예측 분석을 이용하여 정확한 잡음 구간을 검출하고 딱총새우 잡음의 영향을 줄인다. 선형 예측 분석으로 예측한 값과 실제 측정값 사이의 오차가 크기 때문에 이를 통해 효과적으로 딱총새우 구간 검출이 가능해진다. 추가적으로 제안된 특징에 일정 오경보 확률 탐지기를 결합하여 잡음 구간 검출 성능을 추가적으로 개선한다. 제안한 방법을 딱총새우 잡음 구간 검출 최신 방법으로 알려진 다층 웨이블릿 패킷 분해와 비교한 결과, 제안한 방법이 수신자 조작 특성 곡선과 곡선 아래의 면적 측면에서 성능이 평균적으로 0.12만큼 우수하였고 계산량 측면에서도 계산 복잡도가 더 낮았다.

원하지 않는 작은 동작에 의한 잡음 환경 내 생체신호 탐지 기법 (Vital Sign Detection in a Noisy Environment by Undesirable Micro-Motion)

  • 최인오;김민;최재호;박정기;김경태
    • 한국전자파학회논문지
    • /
    • 제30권5호
    • /
    • pp.418-426
    • /
    • 2019
  • 최근 사물인터넷(internet of things: IoT) 스마트 홈 시스템과 관련하여 레이다 기반의 다양한 생체신호 탐지 기법들이 개발되고 있다. 생체신호는 폐에 의한 호흡수와 심장에 의한 심장박동수로 정의되며, 이는 일반적으로 흉부 또는 등의 미세한 움직임을 야기한다. 이때, 이 미세한 움직임은 레이다 수신신호의 위상을 변화시키기 때문에, 생체신호는 주로 위상 변화에 대한 스펙트럼 분석을 통해 탐지된다. 하지만, 호흡수와 달리 심장박동수에 의한 위상 변화는 매우 미약하기 때문에 실제 측정환경에서는 다양한 원인들로 인해 심장박동수가 오탐지될 확률이 매우 높다. 따라서 본 논문에서는 먼저 생체신호 오탐지를 야기하는 원인들을 분석한 후, 이를 바탕으로 효과적인 생체신호 탐지 기법을 제안한다. 제안된 기법은 크게 1) 위상 분리, 2) 위상 미분 및 필터링, 3) 생체신호 탐지, 그리고 4) 오탐지율 감소 단계로 구성되며, IR-UWB(Impulse-Radio Ultra-Wideband)를 사용한 실험 결과에서 보다 효율적이고 정확하게 생체신호가 탐지됨을 확인할 수 있었다.

산사태 모니터링 오탐지율 개선을 위한 토양수분자료 활용에 관한 연구 (A study of applying soil moisture for improving false alarm rates in monitoring landslides)

  • 오승철;정재환;최민하;윤홍식
    • 한국수자원학회논문집
    • /
    • 제54권12호
    • /
    • pp.1205-1214
    • /
    • 2021
  • 강수는 공극수압의 상승에 관여해 토양 강도 및 응력의 변동을 발생시켜 산사태의 주요 원인 인자 중 하나로 지목된다. 따라서 강수는 산사태 발생 임계값 산정에 빈번히 사용되나, 지반 안정성을 직접적으로 산정하고 예측하기에는 무리가 있어 오탐지 사건에 대한 분석에는 한계가 있다. 한편 토양수분은 공극수압의 변동에 보다 직접적인 연관성을 지니므로, 다수의 연구에서 지반 안정성의 정량적인 평가에 활용된 바 있다. 이에 본 연구에서는 산사태 발생에 대한 임계값 산정에 있어 토양수분 인자 활용의 적정성을 평가하고자 하였다. 먼저 두 수문 인자의 거동 분석을 통해 강수에 대한 토양 포화도의 반응성을 파악하고, 선행 강수지수(Antecedent Precipitation Index)를 활용해 산사태 발생 임계값을 산정하였다. 이후 토양 포화도를 활용하여 산사태 발생 임계값을 산정했으며, 분할표를 활용해 두 임계값을 정성적으로 평가하였다. 그 결과, 일 강수량(Pdaily)을 단일 인자로 사용해 결정된 산사태 발생 임계값 대비 괴산읍에서는 각각 75% (API), 42% (SM)의 향상을 보였고 창수면에서는 각각 33% (API), 44% (SM)의 향상을 보였다. 따라서 토양수분과 선행 강수지수 모두 임계성공지수(Critical Success Index)를 효과적으로 향상시켰으며 오탐지율을 감소시켰다. 추후 토양 포화도를 통해 산사태 발생에 요구되는 강우 강도를 산정하는 연구와 토양 포화도 수준에 따른 강우 저항성을 산정하는 연구 등 토양수분 자료를 다각적으로 접목한 연구가 수행된다면 산사태 예측 정확성을 향상시키는 데 기여할 수 있을 것으로 보인다.

P300 숨긴정보검사에서 BAD 방법과 BCD 방법의 비교 (The comparison of the BAD and the BCD methods in a P300-based concealed information test)

  • 엄진섭
    • 한국심리학회지:법
    • /
    • 제12권2호
    • /
    • pp.151-169
    • /
    • 2021
  • P300 숨긴정보검사에서 거짓말 여부를 판단하기 위하여 가장 많이 사용되는 기법은 부트스트랩 진폭차이(BAD) 방법과 부트스트랩 상관차이(BCD) 방법이다. 두 방법의 정확판단율을 비교한 선행연구들은 일관되지 않은 결과를 보고하였다. 일부의 연구들에서 BAD 방법이 BCD 방법보다 더 정확하다고 보고되고 있지만, 다른 연구에서는 BCD 방법이 BAD 방법보다 더 정확한 것으로 나타났다. 본 연구의 목적은 BAD 방법의 정확도가 더 높은 조건과 BCD 방법의 정확도가 더 높은 조건을 확인하는 것이다. 몬테 카를로 연구결과, 전반적으로 BAD 방법의 오경보율이 BCD 방법의 오경보율보다 더 높았으며, BAD 방법의 적중률이 BCD 방법의 적중률보다 더 높았다. 관련자극과 무관련자극의 P300 잠재시간이 비슷한 경우에 비교하여 관련자극의 P300 잠재시간이 약 100ms 빠른 경우에는 BCD 방법의 적중률이 크게 감소하였으며, 약 100ms 느린 경우에는 BCD 방법의 적중률이 증가하였다. 관련자극의 P300 진폭이 무관련자극의 P300 진폭보다 약간 더 크면서 관련자극의 P300 잠재시간이 목표자극의 P300 잠재시간보다 긴 경우에는 BCD 방법의 적중률이 BAD 방법의 적중률보다 더 높았다. BAD 방법의 오경보율이 높은 이유와 BCD 방법의 적중률이 관련자극의 P300 잠재시간에 영향을 받는 이유에 대해서 논의하였다.

비균질 환경에 강인한 검출기를 위한 변동 지수 CFAR의 성능 향상 (Performance Improvement of a Variability-index CFAR Detector for Heterogeneous Environment)

  • 신종우;김완진;도대원;이동훈;김형남
    • 대한전자공학회논문지TC
    • /
    • 제49권3호
    • /
    • pp.37-46
    • /
    • 2012
  • 레이더 및 소나와 같은 탐지 시스템에서 잡음 환경은 균질 (homogeneous) 환경과 비균질 (heterogeneous) 환경으로 구분되며 비균질 환경은 간섭 신호 환경 (target masking)과 클러터 경계 환경 (clutter edge)으로 모델링 할 수 있다. VI (variability index) CFAR (constant false alarm rate)는 이러한 다양한 잡음 환경에 강건한 표적신호 탐지 성능의 확보를 위한 방법으로서, mean-level CFAR 알고리즘들 중에서 주어진 잡음 환경에 최적화된 기법을 선택하는 방법이다. 하지만, VI CFAR의 경우 클러터 잡음 경계 환경과 간섭 신호 환경에서 검출 확률이 저하되는 단점을 보인다. 이를 극복하기 위해, 본 논문에서는 TM (trimmed mean) CFAR와 sub-window를 이용하여 비균질 환경에 의한 검출 확률의 저하를 최소화시키는 방법을 제안한다. 모의 전산 실험 결과에 따르면, 제안된 알고리즘은 기존의 VI CFAR 및 단일 CFAR 알고리즘에 비해 간섭 신호 환경과 클러터 경계 환경에서 검출 확률 및 오경보 확률 측면에서 우수한 성능을 보인다.