• Title/Summary/Keyword: False-alarm rate

Search Result 272, Processing Time 0.029 seconds

Neural Network-based FMCW Radar System for Detecting a Drone (소형 무인 항공기 탐지를 위한 인공 신경망 기반 FMCW 레이다 시스템)

  • Jang, Myeongjae;Kim, Soontae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.289-296
    • /
    • 2018
  • Drone detection in FMCW radar system needs complex techniques because a drone beat frequency is highly dynamic and unpredictable. Therefore, the current static signal processing algorithms cannot show appropriate detection accuracy. With dynamic signal fluctuation and environmental clutters, it can fail to detect a drone or make false detection. It affects to the radar system integrity and safety. Constant false alarm rate (CFAR), one of famous static signal process algorithm is effective for static environment. But for drone detection, it shows low detection accuracy. In this paper, we suggest neural network based FMCW radar system for detecting a drone. We use recurrent neural network (RNN) because it is the effective neural network for signal processing. In our FMCW radar system, one transmitter emits FMCW signal and four-way fixed receivers detect reflected drone beat frequency. The coordinate of the drone can be calculated with four receivers information by triangulation. Therefore, RNN only learns and inferences reflected drone beat frequency. It helps higher learning and detection accuracy. With several drone flight experiments, RNN shows false detection rate and detection accuracy as 21.1% and 96.4%, respectively.

Extraction of Time Coherence Using Detection of Dominant Components for Underwater Acoustic Communication Channels at East Sea (동해 연근해에서 수중통신 채널의 지배응답 검출을 통한 시간 상관도의 산출)

  • Kim, Hyeonsu;Kim, Jaeyoung;Park, Gunwoo;Kim, Seongil;Chung, Jaehak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.22-31
    • /
    • 2013
  • In this paper, we propose a method that estimates the channel response from underwater communication signals with MMSE (Minimun Mean Squared Error) and detects dominant components automatically based on power of response components using CFAR (Constant False Alarm Rate). Statistical characteristics are analyzed with variation of magnitude and phase and time coherence via experimental data obtained by drifting transmitter and receiver. We show that bit error rate has small difference, 1.2 times, compared with the case using every channel information estimated within data period when estimation and equalization is performed with extracted characteristic obtained by the proposed method.

Flaw Detection of Ultrasonic NDT in Heat Treated Environment Using WLMS Adaptive Filter (열처리 환경에서 웨이브렛 적응 필터를 이용한 초음파 비파괴 검사의 결함 검출)

  • 임내묵;전창익;김성환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.7
    • /
    • pp.45-55
    • /
    • 1999
  • In this paper, we used the WLMS(Wavelet domain Least Mean Square) adaptive filter based on the wavelet transform to cancel grain noise. Usually, grain noise occurs in changes of the crystalline structure of metals in high temperature environment. It makes the detection of flaw difficult. The WLMS adaptive filtering algorithm establishes the faster convergence rate by orthogonalizaing the input vector of adaptive filter as compared with that of LMS adaptive filtering algorithm in time domain. We implemented the WLMS adaptive filter by using the delayed version of the primary input vector as the reference input vector and then implemented the CA-CFAR(Cell Averaging- Constant False Alarm Rate) threshold estimator. CA-CFAR threshold estimator enables to detect the flaw and back echo signals automatically. Here, we used the output signals of adaptive filter as its input signal. To Cow the statistical characteristic of ultrasonic signals corrupted by grain noise, we performed run test. The results showed that ultrasonic signals are nonstationary signal, that is, signals whose statistical properties vary with time. The performance of each filter is appreciated by the signal-to-noise ratio. After LMS adaptive filtering in time domain, SNR improves to about 2-3㏈ but after WLMS adaptive filtering in wavelet domain, SNR improves to about 4-6㏈.

  • PDF

Small Target Detection Using 3-dimensional Bilateral Filter (3차원 양방향 필터를 이용한 소형 표적 검출)

  • Bae, Tae-Wuk
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.746-755
    • /
    • 2013
  • This paper presents a three dimensional bilateral filter detecting target trajectory, extracting spatial target information using two dimensional bilateral filter and temporal target information using one dimensional bilateral filter. In order to discriminate edge pixel with flat background and target region spatially and temporally, spatial and temporal variance are used for an image and temporal profile. With this procedure, background and background profile are predicted without original target through two dimensional and one dimensional bilateral filter. Finally, using spatially predicted background and temporally predicted background profile, small target can be detected. For comparison of existing target detection methods and the proposed method, the receiver operating characteristics (ROC) is used in experimental results. Experimental results show that the proposed method has superior target detection rate and lower false alarm rate.

Generate Optimal Number of Features in Mobile Malware Classification using Venn Diagram Intersection

  • Ismail, Najiahtul Syafiqah;Yusof, Robiah Binti;MA, Faiza
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.389-396
    • /
    • 2022
  • Smartphones are growing more susceptible as technology develops because they contain sensitive data that offers a severe security risk if it falls into the wrong hands. The Android OS includes permissions as a crucial component for safeguarding user privacy and confidentiality. On the other hand, mobile malware continues to struggle with permission misuse. Although permission-based detection is frequently utilized, the significant false alarm rates brought on by the permission-based issue are thought to make it inadequate. The present detection method has a high incidence of false alarms, which reduces its ability to identify permission-based attacks. By using permission features with intent, this research attempted to improve permission-based detection. However, it creates an excessive number of features and increases the likelihood of false alarms. In order to generate the optimal number of features created and boost the quality of features chosen, this research developed an intersection feature approach. Performance was assessed using metrics including accuracy, TPR, TNR, and FPR. The most important characteristics were chosen using the Correlation Feature Selection, and the malicious program was categorized using SVM and naive Bayes. The Intersection Feature Technique, according to the findings, reduces characteristics from 486 to 17, has a 97 percent accuracy rate, and produces 0.1 percent false alarms.

Transmission Performance Analysis for OTAR in LINK16 communication system (LINK16 통신체계에서 무선 키 갱신을 위한 전송성능 분석)

  • Hong, Jin-Keun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.384-388
    • /
    • 2004
  • In this paper, we analyses transmission performance of synchronization pattern for over the air rekeying in aerial tactical link of LINK16, when it is given by symbol error rate, in respect of pattern detection probability and false alarm probability.

  • PDF

An Improvement in Detection Performance of Logarithmic Receiver (대수수신계통의 탐색특성개선)

  • 윤현보;장태무;조광래
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.9 no.1
    • /
    • pp.45-48
    • /
    • 1984
  • A serious degradation of blocking of the detection performance in a cell aeraging-logarithmic detector/constant false alarm rate(CA-LOG/CFAR) is known to be caused by the presence of a large interfering noise in the set of sample mean. A technique consisting of the logarithmic circuit and inverter has been proposed to alleviate this problem, by modifying the conventional CA-LOG/CFAR receiver. The detection performance of the proposed technique is linearly improbed over the normal output level and the blocking characteristics of the CA-LOG/CFAR can be changed to finite output level.

  • PDF

Automatic detection of mass type - Breast cancer on dense mammographic images (치밀 유방영상에서 mass형 유방암 자동 검출)

  • Chon Min-Su;Park Jun-Young;Kim Won-Ha
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.80-88
    • /
    • 2006
  • In this paper we developed a novel system for automatic detection of mass type breast cancer on dense digital mammogram images. The new approaches presented in this paper are as follows: 1) we presented a method that stably decides the mass center and radius without being affected by image signal irregularity. 2) We developed a radial directional filter that is suitable to process mass image signal. 3) And we developed the multiple feature function based on mass shape spiculation, mass center homogeneity, and mass eccentricity, so as to determine mass-type breast cancer. When the proposed system is applied to dense mammographic images, the true 기arm rate is improved by 10% over a conventional system while the false alarm is increased by 1 per image.

Intrusion Detection: Supervised Machine Learning

  • Fares, Ahmed H.;Sharawy, Mohamed I.;Zayed, Hala H.
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.305-313
    • /
    • 2011
  • Due to the expansion of high-speed Internet access, the need for secure and reliable networks has become more critical. The sophistication of network attacks, as well as their severity, has also increased recently. As such, more and more organizations are becoming vulnerable to attack. The aim of this research is to classify network attacks using neural networks (NN), which leads to a higher detection rate and a lower false alarm rate in a shorter time. This paper focuses on two classification types: a single class (normal, or attack), and a multi class (normal, DoS, PRB, R2L, U2R), where the category of attack is also detected by the NN. Extensive analysis is conducted in order to assess the translation of symbolic data, partitioning of the training data and the complexity of the architecture. This paper investigates two engines; the first engine is the back-propagation neural network intrusion detection system (BPNNIDS) and the second engine is the radial basis function neural network intrusion detection system (BPNNIDS). The two engines proposed in this paper are tested against traditional and other machine learning algorithms using a common dataset: the DARPA 98 KDD99 benchmark dataset from International Knowledge Discovery and Data Mining Tools. BPNNIDS shows a superior response compared to the other techniques reported in literature especially in terms of response time, detection rate and false positive rate.