International Journal of Control, Automation, and Systems
/
v.5
no.2
/
pp.155-160
/
2007
A fault detection and isolation (FDI) problem is considered for inertial sensors, such as gyroscopes and accelerometers and a new FDI method for double faults is proposed using reduced-order parity vector. The reduced-order parity vector (RPV) algorithm enables us to isolate double faults with 7 sensors. Averaged parity vector is used to reduce false alarm and wrong isolation, and to improve correct isolation. The RPV algorithm is analyzed by Monte-Carlo simulation and the performance is given through fault detection probability, correct isolation probability, and wrong isolation probability.
This study presents an analysis of comparison of P-type fire detection system with fuzzy logic-applied fire detection system. The fuzzy logic-applied fire detection system has input variables obtained by fire experiment of small scale with K-type temperature sensor and optical smoke sensor. And the antecedent part of fuzzy rules consists of temperature and smoke density, and the consequent part consists of fire probability. Also triangular fuzzy membership function is used for input variables and fuzzy rules. To calculate the final fire probability a centroid method is introduced. A fire experiment is conducted with controlling wood crib layer, cigarette to simulate actual fire and false alarm situation. The results show that peak fire probability is 25[%] for non-fire and is more than 80[%] for fire situation, respectively. The fuzzy logic-applied fire detection system suggested here is able to distinguish fire situation and non-fire situation very precisely.
Kim, Cheol;Lee, Kyoung-Rok;Kim, Jin-Young;Choi, Seung-Ho;Choi, Seung-Ho
The Journal of the Acoustical Society of Korea
/
v.21
no.4
/
pp.380-386
/
2002
Conventional post-processing as like confidence measure (CM) proposed by Rahim calculates phones' CM using the likelihood between phoneme model and anti-model, and then word's CM is obtained by averaging phone-level CMs[1]. In conventional method, CMs of some specific keywords are tory low and they are usually rejected. The reason is that statistics of phone-level CMs are not consistent. In other words, phone-level CMs have different probability density functions (pdf) for each phone, especially sri-phone. To overcome this problem, in this paper, we propose normalized confidence measure. Our approach is to transform CM pdf of each tri-phone to the same pdf under the assumption that CM pdfs are Gaussian. For evaluating our method we use common keyword spotting system. In that system context-dependent HMM models are used for modeling keyword utterance and contort-independent HMM models are applied to non-keyword utterance. The experiment results show that the proposed NCM reduced FAR (false alarm rate) from 0.44 to 0.33 FA/KW/HR (false alarm/keyword/hour) when MDR is about 8%. It achieves 25% improvement of FAR.
Most enterprises have controlled claim data related to marketing, production, trade and delivery. They can extract the engineering information needed to the reliability of unit from the claim data, and also detect critical and latent reliability problems. Existing method which could detect abnormal quality unit lists in early stage from claim database has three problems: the exclusion of fallacy probability in claim, the false occurrence of claim fallacy alarm caused by not reflecting inventory information and too many excessive considerations of claim change factors. In this paper, we propose a process and methods extracting abnormal quality unit lists to solve three problems of existing method. Proposed one includes data extraction process for reliability measurement, the calculation method of claim fallacy alarm probability, the method for reflecting inventory time in calculating claim reliability and the method for identification of abnormal quality unit lists. This paper also shows that proposed mechanism could be effectively used after analyzing improved effects taken from automotive company's claim data adaptation for two years.
The Journal of Korean Institute of Communications and Information Sciences
/
v.33
no.11A
/
pp.1063-1071
/
2008
This paper proposes a prior maximum likelihood (ML) detection verifier which has an ability to verify if the zero forcing (ZF) detection results are identical to the ML detection results. Since more than 90% of ZF detection results are identical to ML detection results, the proposed verifier makes it possible to omit the computationally complex ML detection in 90% cases of MIMO signal detections. The proposed verifier is designed by using the diversity gain obtained from converting MIMO signal into single input multiple output (SIMO) signals. In the proposed method, single input multiple output (SIMO) signals for each transmit antenna are separated from MIMO signals after the MIMO signals are detected by ZF method. Computer simulations show that the true alarm probability of the proposed verifier is more than 80% and the false alarm probability is less than $10^{-4}$.
Journal of the Institute of Electronics Engineers of Korea TC
/
v.49
no.3
/
pp.37-46
/
2012
In RADAR and SONAR detection systems, noise environment can be classified into homogeneous and heterogeneous environment. Especially heterogeneous environments are modelled as target masking and clutter edge. Since the variability-index (VI) CFAR, a composed CFAR algorithm, dynamically selects one of the mean-level algorithms based on the VI and the MR (mean ratio) test, it is robust to various environments. However, the VI CFAR still suffers from lowered detection probabilities in heterogeneous environments. To overcome these problems, we propose an improved VI CFAR processor where TM (trimmed mean) CFAR and a sub-windowing technique are introduced to minimize the degradation of the detection probabilities appeared in heterogeneous environments. Computer simulation results show that the proposed method has the better performance in terms of detection probability and false alarm probability compared to the VI CFAR and single CFAR algorithms.
Kim, Ki-Taae;Kwak, Chul-Hyun;Hong, Sang-Gi;Park, Sang-Jun;Kim, Keon-Wook
Journal of the Institute of Electronics Engineers of Korea SP
/
v.46
no.6
/
pp.153-162
/
2009
This paper suggests the novel light-weight signal processing algorithm for wireless sensor network applications which needs low computing complexity and power consumption. Exponential average method (EA) is utilized by real time, to process the magnetometer signal which is analyzed to understand the own physical characteristic in time domain. EA provides the robustness about noise, magnetic drift by temperature and interference, furthermore, causes low memory consumption and computing complexity for embedded processor. Hence, optimal parameter of proposal algorithm is extracted by statistical analysis. Using general and precision magnetometer, detection probability over 90% is obtained which restricted by 5% false alarm rate in simulation and using own developed magnetometer H/W, detection probability over 60~70% is obtained under 1~5% false alarm rate in simulation and experiment.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.29
no.12
/
pp.68-76
/
2015
We examine the standalone lightning warning system (LWS) and its warning performances for three years. This system acquires and analyzes the data of cloud-to-ground strike (CG), intra-cloud discharge (IC) and electrostatic field (EF) to produce prior warnings with respect to the impending arrival of CG in the area of concern (AOC). The warnings in this system are carried out based on the fixed two areas method. To evaluate warning performances, we analyzed the statistics of warnings with probability of detection (POD) and false alarm ratio (FAR). Based on the previous study, we revised the trigger and clear conditions of lightning warning for improving the performances of the system. As a result of this revision, POD increased from 0.18 to 0.44 and FAR decreased from 0.96 to 0.78 during the summer of 2014. However, the LWS was not possible to trigger effective alerts (EA) because there was no effective lead time (LT) for the fixed two areas method. Problems related to the low detection efficiency of IC and the use of EF data for warnings still decreased POD and increased FAR. Hence, we proposed the development method of a new LWS (NLWS) that would be composed of integrated weather data, the flexible two areas and the user software in order to trigger EA and improve warning performances.
In this study, the classification of cold water and normal water based on Geo-Kompsat 2A images was performed. Daily mean surface temperature products provided by the National Meteorological Satellite Center (NMSC) were used, and convolution neural network (CNN) deep learning technique was applied as a classification algorithm. From 2019 to 2022, the cold water occurrence data provided by the National Institute of Fisheries Science (NIFS) were used as the cold water class. As a result of learning, the probability of detection was 82.5% and the false alarm ratio was 54.4%. Through misclassification analysis, it was confirmed that cloud area should be considered and accurate learning data should be considered in the future.
This paper presents a study on the analysis for reducing the number of false alarms in fire detection system. In order to intelligent algorithm fuzzy logic is adopted in developing fire detection system to reduce false alarm. The intelligent fire detection algorithm compared and analyzed the fire and non-fire signatures measured in circuits simulating flame fire and smoldering fire. The algorithm has input variables obtained by fire experiment with K-type thermocouple and optical smoke sensor. Also triangular membership function is used for inference rules. And the antecedent part of inference rules consists of temperature and smoke density, and the consequent part consists of fire probability. A fire-experiment is conducted with paper, plastic, and n-heptane to simulate actual fire situation. The results show that the intelligent fire detection algorithm suggested in this study can more effectively discriminate signatures between fire and similar fire.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.