This study was performed in order to evaluate the accuracy and the usefulness of the fine needle aspiration cytology (FNAC) on the breast lesions, to compare the FNAC findings between fibroadenoma and fibrocystic disease, and to determine the accuracy of cytologic Black's nuclear grading. The subjects in this study were 110 cases of FNAC, later confirmed by biopsy, between January 1988 and December 1991. The results are as follows ; 1 Comparison between the results of the FNAC and the histologic findings revealed that FNAC had a sensitivity of 96.6%, a specificity of 100%, a false negative rate of 3.4% a false positive rate of 0.0%, and an overall diagnostic accuracy of 98.2%. 2 Semi-quantitative evaluation of epithelial celluarity, stroma, and naked nuclei in the smears of aspirate showed high celluarity in 56.7% of the aspirates from fibroadenoma and in 0% of those from fibrocystic disease. Abundant stroma was found in 46.7% of the fibroadenoma and none of fibrocystic disease. Numerous naked nuclei were found in 60% of the fibroadenoma and 4.5% of the fibrocystic disease. The overall diagnostic accuracy was 98% 3. In order to determine the accuracy of Black's nuclear grading of FNAC on breast carcinoma, we retrospectively studied 38 cases of ductal carcinomas diagnosed by FNAC with subsequent histologic confirmation. The concordance rate with histology was 94.7%. These results suggest that FNAC of breast is a diagnostically accurate method, and provide for the preoperative differential diagnosis between fibroadenoma and fibrocystic disease. Our results also suggest that the evaluation of nuclear grading of FNAC can predict clinical outcome and decide the way of management of breast cancer.
This paper proposes a stereo vision-based forward obstacle detection and distance measurement method. In general, stereo vision-based obstacle detection methods in automotive applications can be classified into two categories: IPM (Inverse Perspective Mapping)-based and disparity histogram-based. The existing disparity histogram-based method was developed for stop-and-go applications. The proposed method extends the scope of the disparity histogram-based method to highway applications by 1) replacing the fixed rectangular ROI (Region Of Interest) with the traveling lane-based ROI, and 2) replacing the peak detection with a constant threshold with peak detection using the threshold-line and peakness evaluation. In order to increase the true positive rate while decreasing the false positive rate, multiple candidate peaks were generated and then verified by the edge feature correlation method. By testing the proposed method with images captured on the highway, it was shown that the proposed method was able to overcome problems in previous implementations while being applied successfully to highway collision warning/avoidance conditions, In addition, comparisons with laser radar showed that vision sensors with a wider FOV (Field Of View) provided faster responses to cutting-in vehicles. Finally, we integrated the proposed method into a longitudinal collision avoidance system. Experimental results showed that activated braking by risk assessment using the state of the ego-vehicle and measuring the distance to upcoming obstacles could successfully prevent collisions.
Smoke detection plays an important role for the early detection of fire. In this paper, we suggest a newly developed method that generated LBPV(Local Binary Pattern Variance)s as special feature vectors from RGB contrast images can be applied to detect smoke using SVM(Support Vector Machine). The proposed method rearranges mean value of the block from each R, G, B channel and its intensity of the mean value. Additionally, it generates RGB contrast image which indicates each RGB channel’s contrast via smoke’s achromatic color. Uniform LBPV, Rotation-Invariance LBPV, Rotation-Invariance Uniform LBPV are applied to RGB Contrast images so that it could generate feature vector from the form of LBP. It helps to distinguish between smoke and non smoke area through SVM. Experimental results show that true positive detection rate is similar but false positive detection rate has been improved, although the proposed method reduced numbers of feature vector in half comparing with the existing method with LBP and LBPV.
International Journal of Computer Science & Network Security
/
v.21
no.1
/
pp.97-106
/
2021
Social networking platforms have become a smart way for people to interact and meet on internet. It provides a way to keep in touch with friends, families, colleagues, business partners, and many more. Among the various social networking sites, Twitter is one of the fastest-growing sites where users can read the news, share ideas, discuss issues etc. Due to its vast popularity, the accounts of legitimate users are vulnerable to the large number of threats. Spam and Malware are some of the most affecting threats found on Twitter. Therefore, in order to enjoy seamless services it is required to secure Twitter against malicious users by fixing them in advance. Various researches have used many Machine Learning (ML) based approaches to detect spammers on Twitter. This research aims to devise a secure system based on Hybrid Similarity Cosine and Soft Cosine measured in combination with Genetic Algorithm (GA) and Artificial Neural Network (ANN) to secure Twitter network against spammers. The similarity among tweets is determined using Cosine with Soft Cosine which has been applied on the Twitter dataset. GA has been utilized to enhance training with minimum training error by selecting the best suitable features according to the designed fitness function. The tweets have been classified as spammer and non-spammer based on ANN structure along with the voting rule. The True Positive Rate (TPR), False Positive Rate (FPR) and Classification Accuracy are considered as the evaluation parameter to evaluate the performance of system designed in this research. The simulation results reveals that our proposed model outperform the existing state-of-arts.
Journal of information and communication convergence engineering
/
v.21
no.4
/
pp.322-328
/
2023
The number of senior citizens with large bowel obstruction is steadily growing in Korea. Plain radiography was used to examine the severity and treatment of this phenomenon. To avoid examiner subjectivity in radiography readings, we propose an automatic segmentation method to identify fluid-filled areas indicative of large bowel obstruction. Our proposed method applies the Hough transform to locate suspicious areas successfully and applies the possibilistic fuzzy c-means unsupervised learning algorithm to form the target area in a noisy environment. In an experiment with 104 real-world large-bowel obstruction radiographs, the proposed method successfully identified all suspicious areas in 73 of 104 input images and partially identified the target area in another 21 images. Additionally, the proposed method shows a true-positive rate of over 91% and false-positive rate of less than 3% for pixel-level area formation. These performance evaluation statistics are significantly better than those of the possibilistic c-means and fuzzy c-means-based strategies; thus, this hybrid strategy of automatic segmentation of large bowel suspicious areas is successful and might be feasible for real-world use.
Background: The Bahcesehir Breast Cancer Screening Project is the first organized population based breast cancer mammographic screening project in Turkey. The objective of this prospective observational study was to demonstrate the feasibility of a screening program in a developing country and to determine the appropriate age (40 or 50 years old) to start with screening in Turkish women. Materials and Methods: Between January 2009 to December 2010, a total of 3,758 women aged 40-69 years were recruited in this prospective study. Screening was conducted biannually, and five rounds were planned. After clinical breast examination (CBE), two-view mammograms were obtained. True positivity, false positivity, positive predictive values (PPV) according to ACR, cancer detection rate, minimal cancer detection rate, axillary node positivity and recall rate were calculated. Breast ultrasound and biopsy were performed in suspicious cases. Results: Breast biopsy was performed in 55 patients, and 18 cancers were detected in the first round. The overall cancer detection rate was 4.8 per 1,000 women. Most of the screened women (54%) and detected cancers (56%) were in women aged 40-49. Ductal carcinoma in situ (DCIS) and stage I cancer and axillary node positivity rates were 22%, 61%, and 16.6%, respectively. The positive predictivity for biopsy was 32.7%, whereas the overall recall rate was 18.4 %. Conclusions: Preliminary results of the study suggest that population based organized screening are feasible and age of onset of mammographic screening should be 40 years in Turkey.
June-Goo Lee;HeeSoo Kim;Heejun Kang;Hyun Jung Koo;Joon-Won Kang;Young-Hak Kim;Dong Hyun Yang
Korean Journal of Radiology
/
v.22
no.11
/
pp.1764-1776
/
2021
Objective: This study aimed to validate a deep learning-based fully automatic calcium scoring (coronary artery calcium [CAC]_auto) system using previously published cardiac computed tomography (CT) cohort data with the manually segmented coronary calcium scoring (CAC_hand) system as the reference standard. Materials and Methods: We developed the CAC_auto system using 100 co-registered, non-enhanced and contrast-enhanced CT scans. For the validation of the CAC_auto system, three previously published CT cohorts (n = 2985) were chosen to represent different clinical scenarios (i.e., 2647 asymptomatic, 220 symptomatic, 118 valve disease) and four CT models. The performance of the CAC_auto system in detecting coronary calcium was determined. The reliability of the system in measuring the Agatston score as compared with CAC_hand was also evaluated per vessel and per patient using intraclass correlation coefficients (ICCs) and Bland-Altman analysis. The agreement between CAC_auto and CAC_hand based on the cardiovascular risk stratification categories (Agatston score: 0, 1-10, 11-100, 101-400, > 400) was evaluated. Results: In 2985 patients, 6218 coronary calcium lesions were identified using CAC_hand. The per-lesion sensitivity and false-positive rate of the CAC_auto system in detecting coronary calcium were 93.3% (5800 of 6218) and 0.11 false-positive lesions per patient, respectively. The CAC_auto system, in measuring the Agatston score, yielded ICCs of 0.99 for all the vessels (left main 0.91, left anterior descending 0.99, left circumflex 0.96, right coronary 0.99). The limits of agreement between CAC_auto and CAC_hand were 1.6 ± 52.2. The linearly weighted kappa value for the Agatston score categorization was 0.94. The main causes of false-positive results were image noise (29.1%, 97/333 lesions), aortic wall calcification (25.5%, 85/333 lesions), and pericardial calcification (24.3%, 81/333 lesions). Conclusion: The atlas-based CAC_auto empowered by deep learning provided accurate calcium score measurement as compared with manual method and risk category classification, which could potentially streamline CAC imaging workflows.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.3
/
pp.75-81
/
2014
In a distribution of the digital image, there is a serious problem that is distributed an illegal forgery image by pirates. For the problem solution, this paper proposes an image forensic decision algorithm using an edge energy information of forgery image. The algorithm uses SA (Streaking Artifacts) and SPAM (Subtractive Pixel Adjacency Matrix) to extract the edge energy informations of original image according to JPEG compression rate(QF=90, 70, 50 and 30) and the query image. And then it decides the forge whether or not by comparing the edge informations between the original and query image each other. According to each threshold in TCJCR (Threshold by Combination of JPEG Compression Ratios), the matching of the edge informations of original and query image is excused. Through the matching experiments, TP (True Positive) and FN (False Negative) is 87.2% and 13.8% respectively. Thus, the minimum average decision error is 0.1349. Also, it is confirmed that the performed class evaluation of the proposed algorithm is 'Excellent(A)' because of the AUROC (Area Under Receiver Operating Characteristic) curve is 0.9388 by sensitivity and 1-specificity.
Mouse hepatitis virus (MHV) is a major pathogen in laboratory mice that usually leads to fatal diseases, such as hepatitis, multiple sclerosis, encephalitis, and respiratory disease. MHV has a high infection rate, and it needs to be detected as soon as possible to prevent its spread to other facilities. However, MHV detection by enzyme-linked immunosorbent assay (ELISA) often gives false positives; thus, it is very important that the results are confirmed as true positives in the early infection stage or distinguished as false positives with more accurate, reliable methods. Under microbiological screening, MHV ELISA-positive mice were found in four GFP-tagging transgenic mice. To verify the detection of the MHV antigen directly, reverse transcription polymerase chain reaction (RT-PCR) was performed, and the mice were determined to be MHV negative. Additional serum antibody-based screening was conducted with three different ELISA kits, and multiplexed fluorometric immunoassay (MFIA) was performed to confirm their accuracy/sensitivity. In brief, the ELISA kit for A59 nucleocapsid protein (MHV-A59N) revealed MHV ELISA positivity, while other ELISA kits (MHV-S lysate and MHV-JHM lysate) demonstrated MHV negativity. In MFIA, only the test for the recombinant A59 nucleocapsid antigen was MHV positive, which was consistent with the ELISA results. These results suggest that the ELISA kit with the recombinant A59 nucleocapsid antigen might induce non-specific MHV ELISA positivity and that confirmation is therefore essential.
Farshid, Gelareh;Sullivan, Thomas;Jones, Simeon;Roder, David
Asian Pacific Journal of Cancer Prevention
/
v.15
no.24
/
pp.10665-10673
/
2015
Background: We wished to analyse patterns of use of needle biopsy procedures by BreastScreen Australia (BSA) accredited programs to identify areas for improvement. Design: BSA services provided anonymous data regarding percutaneous needle biopsy of screen detected lesions assessed between 2005-2009. Results: 12 services, from 5 of 7 Australian states and territories provided data for 18212 lesions biopsied. Preoperative diagnosis rates were 96.84% for lesion other than microcalcification (LOTM) and 93.21% for microcalcifications. At surgery 97.9% impalpable lesions were removed at the first procedure. Of 11548 Microcalcification (LOTM) biopsied, 46.9% were malignant. The final diagnosis was reached by conventional core biopsy (CCB) in 72.46%, FNAB in 21.33%, VACB in 1.69% and open biopsy in 4.52% of lesions. FNA is being limited to LOTM with benign imaging After FNAB, core biopsy was required for 38% of LOTM. In LOTM the mean false positive rate (FPR) was 0.36% for FNAB, 0.06% for NCB and 0% for VACB. Diagnostic accuracy was 72.75% for FNAB and 92.1% for core biopsies combined. Of 6441 microcalcifications biopsied 2305 (35.8%) were malignant. Microcalcifications are being assessed primarily by NCB but 6.57% underwent FNAB, 45.6% of which required NCB. False positive diagnoses were rare. FNR was 5% for NCB and 1.53% for VACB. Diagnostic accuracy was 73.52% for FNAB, 86.29% for NCB and 88.63% for VACB. Only 8 of 12 services had access to VACB facilities. Conclusions: BSA services are selecting lesions effectively for biopsy and are achieving high preoperative diagnosis rates. Gaps in the present accreditation standards require further consideration.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.