본 연구에서는 다목적 레이다 시스템의 신호처리부 설계방안과 알고리즘에 대해 분석하였다. 충돌방지 및 기상모드로 동작하는 신호처리부는 이 두 모드에 대해 ADC, NCI, STC, CFAR의 처리구조를 갖도록 설계하였다. NCI와 CFAR기법으로 제시된 여러 알고리즘의 특성을 분석하였다. 오경보율을 낮추고, 검출확률을 향상시키는데 CVI 알고리즘과 CMLD 알고리즘이 우수한 성능을 갖는 것으로 분석되었다. 시스템 계산 성능을 고려하여 CMLD에 M=16~20, Ko=M-4를 적용하는 것이 적절하다. CVI에 많은 계산 시간이 되므로, CVI에 2개 이상의 프로세서가 할당되어야 한다. 따라서, 4개의 프로세서를 고려하는 시스템에서는 ADC 입력 처리와 NCI의 VID처리, STC와 CFAR를 각각 1개의 프로세서에서 처리하고 2개의 프로세서가 CVI를 처리하여야 한다.
As the application of deep-learning methods has been succeeded in various fields, they have a high potential to be applied to space weather forecasting. Convolutional neural network, one of deep learning methods, is specialized in image recognition. In this study, we apply the AlexNet architecture, which is a winner of Imagenet Large Scale Virtual Recognition Challenge (ILSVRC) 2012, to the forecast of daily solar flare occurrence using the MatConvNet software of MATLAB. Our input images are SOHO/MDI, EIT $195{\AA}$, and $304{\AA}$ from January 1996 to December 2010, and output ones are yes or no of flare occurrence. We consider other input images which consist of last two images and their difference image. We select training dataset from Jan 1996 to Dec 2000 and from Jan 2003 to Dec 2008. Testing dataset is chosen from Jan 2001 to Dec 2002 and from Jan 2009 to Dec 2010 in order to consider the solar cycle effect. In training dataset, we randomly select one fifth of training data for validation dataset to avoid the over-fitting problem. Our model successfully forecasts the flare occurrence with about 0.90 probability of detection (POD) for common flares (C-, M-, and X-class). While POD of major flares (M- and X-class) forecasting is 0.96, false alarm rate (FAR) also scores relatively high(0.60). We also present several statistical parameters such as critical success index (CSI) and true skill statistics (TSS). All statistical parameters do not strongly depend on the number of input data sets. Our model can immediately be applied to automatic forecasting service when image data are available.
Corona discharge is always a sign of failure processes of high-voltage electrical apparatus, including those utilized in electric railway systems. Solar-blind ultraviolet (UV) cameras are effective tools for corona inspection. In this work, we present an automatic railway corona-discharge detection system based on solar-blind ultraviolet detection. The UV camera, mounted on top of a train, inspects the electrical apparatus, including transmission lines and insulators, along the railway during fast cruising of the train. An algorithm based on the Hough transform is proposed for distinguishing the emitting objects (corona discharge) from the noise. The detection system can report the suspected corona discharge in real time during fast cruises. An experiment was carried out during a routine inspection of railway apparatus in Xinjiang Province, China. Several corona-discharge points were found along the railway. The false-alarm rate was controlled to less than one time per hour during this inspection.
CFAR(Constant False Alarm Rate)는 레이다 시스템에서 표적 탐지에 주요 사용된다. 그 중에서 OS(Ordered Statistic) CFAR는 비균일 잡음환경에서 사용된다. 그러나 OS CFAR는 참조 셀을 오름차순으로 정렬하여 임계값을 계산하므로 많은 연산량이 필요하다. 이로 인하여 실시간 적용에 어려움이 있다. 본 논문에서는 OS CFAR의 연산량을 줄이는 방안을 서술한다. 단순 표적 유무만 판단하기 위하여 참조 셀들을 오름차순 정렬하는 대신 참조 셀과 크기 비교하는 방식으로 수행하였다. 그리고 3개의 테스트 셀을 묶어 구역을 나누고, 구역 내에서 공통 참조 셀을 구하였다. 공통 참조 셀과 테스트 셀과의 크기 비교를 우선 수행함으로써 연산시간을 단축한다.
현재 고밀도 반도체제작 환경에서는 반작용적인 이온 식각 과정(reactive ion etching)에서의 생산성을 극대화하기 위해서 비정상적인 공정장비를 발견하는 것이 매우 중요하다. 생산과정에서 오류발견의 중요성을 설명하기 위해 Support Vector Machine (SVM)은 실시간으로 공정오류에 대한 판단을 위해 사용되었다. 반작용적인 이온 식각도구 데이터는 59개 변수들로 구성된 반도체 공정장비로부터 얻는다. 각각의 변수들은 초당 10개의 데이터로 구성되어있다. 식각 런의 11개의 파라미터에 대한 모델을 만들기 위해 baseline런으로부터 얻은 데이터로 SVM모델을 구성하고 정상 런데이터와 비정상 런데이터로 SVM모델을 검증한다. 통계적 공정제어에서 흔히 이용되는 관리한계를 도입하여 정상데이터가 내재하고 있는 램덤변화율이 반영된 SVM 모델 기반의 관리 한계를 수립하고, 그 관리 한계를 바탕으로 오류발견을 실행한다. SVM을 이용함으로써 RIE의 오류발견은 run to run 기반에 정상 런데이터는 0% 오류율이 증명되었다.
협력 스펙트럼 센싱은 스펙트럼 센싱의 신뢰성 및 정확도를 높이기 위해 다수의 CR 기기들이 정보를 공유하여 면허 사용자를 검출하는 방식이다. 이때, CR 기기의 센싱 결과를 융합하는 방식에 따라 경판정 방식(hard decision method)과 연판정 방식(soft decision method)으로 구별할 수 있다. 본 논문은 면허 사용자와 CR 기기 사이의 거리에 따른 가중치가 적용된 결합 방식(Distance based Weight Combining: DWC)을 사용하여 에너지 검출기반 협력 스펙트럼 센싱을 제안하고, 이에 따른 분석 및 모의 실험 결과를 나타낸다. 면허 사용자의 신호는 OFDM 기반의 시스템을 가정하였으며, 면허 사용자와 CR 기기 사이의 무선 채널은 가우시안(Gaussian) 채널로 모델링하였다. 에너지 검출법을 위한 임계값은 각 채널의 SNR(Signal to Noise Ratio)에 따라 다르게 적용되었으며, 각 채널의 잡음 신호의 평균값으로 가정하였다. DWC를 적용한 협력 스펙트럼 센싱을 수행한 결과, 거리에 따라 다양한 검출 확률을 나타낸 단일 센싱에 비해 비교적 안정된 검출 확률을 나타내는 것으로 알 수 있었으며, 동일 이득 결합을 반영하여 협력 스펙트럼 센싱을 수행한 것보다 우수한 스펙트럼 센싱을 나타내었다.
Precipitation forecasts from MM5 have been verified for the period 1989-2001 over Yeongdong region to show a tendency of model forecast. We select 57 events which are related with the heavy snowfall in Yeongdong region. They are classified into three precipitation types; mountain type, cold-coastal type, and warm type. The threat score (TS), the probability of detection (POD), and the false-alarm rate (FAR) are computed for categorical verification and the mean squared error (MSE) is also computed for scalar accuracy measures. In the case of POD, warm, mountain, and cold-coastal precipitation type are 0.71, 0.69, and 0.55 in turn, respectively. In aspect of quantitative verification, mountain and cold-coastal type are relatively well matched between forecasts and observations, while for warm type MM5 tends to overestimate precipitation. There are 12 events for the POD below 0.2, mountain, cold-coastal, warm type are 2, 7, 3 events, respectively. Most of their precipitation are distributed over the East Sea nearby Yeongdong region. These events are also shown when there are no or very weak easterlies in the lower troposphere. Even in the case that we use high resolution sea surface temperature (about 18 km) for the boundary condition, there are not much changes in the wind direction to compare that with low resolution sea surface temperature (about 100 km).
본 논문은 조기 화재 경보 시스템에서 예측하지 못한 위험요소들의 이벤트에 즉각 응답하는 비디오 기반의 효과적인 4단계 연기 감지 방법을 제안한다. 첫 번째 단계에서는 근사 미디언(approximate median) 방법을 사용하여 비디오의 현재 프레임에서 움직이는 영역들을 분리한다. 두 번째 단계에서는 연기의 칼라 기반 분리 기법을 사용하여 이러한 움직이는 영역들로부터 후보 연기 영역을 선택한다. 세 번째 단계에서는 특징추출 알고리즘을 사용하여 연기의 움직임이나 지역 불규칙성과 같은 후보 연기 영역들의 특징을 분석하여 연기의 다섯 가지 특징 파라미터를 추출한다. 네 번째 단계에서는 추출된 다섯 가지 특징 파라미터를 K-nearest neighbor (KNN) 알고리즘의 입력으로 사용하여 후보 연기 영역이 연기인지 아닌지를 구분한다. 모의실험 결과, 제안하는 4 단계 연기 감지 방법은 기존의 연기 감지 알고리즘들과 비교하여 연기감지의 정확도에서 우수한 성능을 보였고, 또한 오픈된 넓은 공간에서도 높은 신뢰성과 낮은 오류 경보율을 보였다.
본 논문은 방위각 및 고저방향으로 카메라 움직임이 있는 감시장치의 비디오 프레임 연속영상을 1)각각 $N{\times}M$ 개의 서브블록으로 나눈 후 각각의 서브블록에 대해 FFT 위상상관 기법을 적용하여 이동표적 위치를 구하고, 2)연속영상을 정합 후 차영상을 구하여 적응 문턱 값을 적용해서 표적후보군을 구하였으며, 3)두 기법을 적용하여 클러터를 제거하는 새로운 표적탐지기법을 제안하였다. 블록 내 다양한 크기의 영상 움직임이 있을 경우 FFT 위상상관 기법은 적용하여 움직임을 구하면 큰 영상의 움직임이 가장 큰 위상상관 값으로 나타나는 특성을 이용하여 배경환경에 강인한 이동표적 위치(블록)탐지를 하였다. 또한, 차영상을 영상분리하기 위한 적응 문턱 값은 카메라 움직임 등 배경환경 변화를 고려한 학습가중치를 이용하여 구하였다. 제안된 알고리즘 성능입증은 다양한 배경환경에서 카메라 이동/정지조건에서 다양한 이동표적에 대해 탐지 가능함을 시뮬레이션을 통해 확인하였으며 탐지성능은 ROC 커브를 통해 확인하였다.
본 연구는 S대역 또는 X대역 레이다 보다 빔폭이 상대적으로 큰 저주파 대역을 사용하는 초단파 레이다의 SLB/BLB 설계 및 구현에 대한 연구이다. 초단파 대역의 안테나는 빔폭이 상대적으로 크기 때문에 부엽에서 반사된 표적 신호를 처리하지 않으면 주엽 신호에서 들어온 것으로 인식하여 레이다의 탐지 오경보율이 증가한다. 부엽 차단 방법은 배열 안테나의 중앙쪽 복사소자를 사용하여 배열안테나 전면부의 부엽 신호를 차단하고, 뒤쪽에서 들어오는 신호는 BLB 수신안테나 조립체를 통해 차단시킨다. 레이다 구현을 완료하여 모의 신호 발생장치를 활용한 시스템 단위의 부엽 신호 차단에 대한 시험을 통하여 SLB/BLB 신호가 제거되는 것을 시험을 통하여 확인하였다. 본 연구를 통하여 향후 안테나 크기 및 빔폭이 큰 저주파 대역 레이다용 배열안테나의 부엽 차단 기술 구현에 활용할 예정이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.