• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.034 seconds

A Forensic Methodology for Detecting Image Manipulations (이미지 조작 탐지를 위한 포렌식 방법론)

  • Jiwon Lee;Seungjae Jeon;Yunji Park;Jaehyun Chung;Doowon Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.4
    • /
    • pp.671-685
    • /
    • 2023
  • By applying artificial intelligence to image editing technology, it has become possible to generate high-quality images with minimal traces of manipulation. However, since these technologies can be misused for criminal activities such as dissemination of false information, destruction of evidence, and denial of facts, it is crucial to implement strong countermeasures. In this study, image file and mobile forensic artifacts analysis were conducted for detecting image manipulation. Image file analysis involves parsing the metadata of manipulated images and comparing them with a Reference DB to detect manipulation. The Reference DB is a database that collects manipulation-related traces left in image metadata, which serves as a criterion for detecting image manipulation. In the mobile forensic artifacts analysis, packages related to image editing tools were extracted and analyzed to aid the detection of image manipulation. The proposed methodology overcomes the limitations of existing graphic feature-based analysis and combines with image processing techniques, providing the advantage of reducing false positives. The research results demonstrate the significant role of such methodology in digital forensic investigation and analysis. Additionally, We provide the code for parsing image metadata and the Reference DB along with the dataset of manipulated images, aiming to contribute to related research.

Artificial Intelligence-Based Detection of Smoke Plume and Yellow Dust from GEMS Images (인공지능 기반의 GEMS 산불연기 및 황사 탐지)

  • Yemin Jeong;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Soyeon Choi;Yungyo Im;Youngmin Seo;Jeong-Ah Yu;Kyoung-Hee Sung;Sang-Min Kim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.859-873
    • /
    • 2023
  • Wildfires cause a lot of environmental and economic damage to the Earth over time. Various experiments have examined the harmful effects of wildfires. Also, studies for detecting wildfires and pollutant emissions using satellite remote sensing have been conducted for many years. The wildfire product for the Geostationary Environmental Monitoring Spectrometer (GEMS), Korea's first environmental satellite sensor, has not been provided yet. In this study, a false-color composite for better expression of wildfire smoke was created from GEMS and used in a U-Net model for wildfire detection. Then, a classification model was constructed to distinguish yellow dust from the wildfire smoke candidate pixels. The proposed method can contribute to disaster monitoring using GEMS images.

Effect of novel luminol-based blood detection reagents on DNA stability (새로운 루미놀 기반 혈흔 탐지 시약이 디엔에이에 미치는 영향에 대한 연구)

  • Jung, Ju Yeon;Oh, Yu-Li;Lee, Jee Won;Lim, Seung;Kim, Jung-mok;Lee, Yang Han;Lim, Si-Keun
    • Analytical Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.71-77
    • /
    • 2018
  • Detection of bloodstains is a very important process in scientific investigations, and luminol is often used for the detection of bloodstains that are not visible. Recently, new preparation methods of blood detection reagents based on luminol (BloodFlareA, B) were developed and reported to have higher active persistence and to be more economical than conventional blood detection reagent, BlueStar forensic. In this paper, we tested the specificity and effect of the BloodFlares (A and B) on DNA and compared them with those of BlueStar forensic. False positive results for the BloodFlares were not observed in semen, saliva, vaginal fluids, urine, sweat, and nasal discharge, but were observed in $CuSO_4$, $FeSO_4$, and bleach solutions, and the observed patterns were similar to those of BlueStar forensic. The effect on DNA was determined by analyzing the DNA yield, degradation index, and DNA profiling. Based on these results, we concluded that the BloodFlares based on luminol do not affect DNA stability and are applicable in forensics.

A Study of Web Application Attack Detection extended ESM Agent (통합보안관리 에이전트를 확장한 웹 어플리케이션 공격 탐지 연구)

  • Kim, Sung-Rak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.1 s.45
    • /
    • pp.161-168
    • /
    • 2007
  • Web attack uses structural, logical and coding error or web application rather than vulnerability to Web server itself. According to the Open Web Application Security Project (OWASP) published about ten types of the web application vulnerability to show the causes of hacking, the risk of hacking and the severity of damage are well known. The detection ability and response is important to deal with web hacking. Filtering methods like pattern matching and code modification are used for defense but these methods can not detect new types of attacks. Also though the security unit product like IDS or web application firewall can be used, these require a lot of money and efforts to operate and maintain, and security unit product is likely to generate false positive detection. In this research profiling method that attracts the structure of web application and the attributes of input parameters such as types and length is used, and by installing structural database of web application in advance it is possible that the lack of the validation of user input value check and the verification and attack detection is solved through using profiling identifier of database against illegal request. Integral security management system has been used in most institutes. Therefore even if additional unit security product is not applied, attacks against the web application will be able to be detected by showing the model, which the security monitoring log gathering agent of the integral security management system and the function of the detection of web application attack are combined.

  • PDF

A Study of Improving Methods for The Performance of Freeway Incident Detection Algorithm (고속도로 돌발상황검지알고리즘 성능 개선기법에 관한 연구)

  • 강수구;손봉수;도철웅;이시복
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.105-118
    • /
    • 2001
  • Incident detection rate and false alarm rate are the key measures tot estimating the performance of automatic incident detection algorithms. It is, however inherently very difficult to improve the two measures simultaneously. The main purpose of this study is to present some methods for solving the problem. For this, an incident detection algorithm has been designed in this study. The algorithm is consisted of two functions, one for detecting incident and another for detecting congestion. A logic for distinguishing non-recurrent congestion from recurrent congestion was employed in the algorithm. The new algorithm basically requires speed, flow, and occupancy data for defining incident situation, but the algorithm is able to perform this task without one of the three parameters. The performance of the algorithm has been evaluated by using the field data collected from Interstate Highway 880 in Bay Area, California. The empirical analysis results are very promising and thus, the algorithm proposed may be very useful for the analysts. This paper presents some empirical test results for the performance of California incident detection algorithm, only for the reference purpose.

  • PDF

The GOCI-II Early Mission Marine Fog Detection Products: Optical Characteristics and Verification (천리안 해양위성 2호(GOCI-II) 임무 초기 해무 탐지 산출: 해무의 광학적 특성 및 초기 검증)

  • Kim, Minsang;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study analyzes the early satellite mission marine fog detection results from Geostationary Ocean Color Imager-II (GOCI-II). We investigate optical characteristics of the GOCI-II spectral bands for marine fog between October 2020 and March 2021 during the overlapping mission period of Geostationary Ocean Color Imager (GOCI) and GOCI-II. For Rayleigh-corrected reflection (Rrc) at 412 nm band available for the input of the GOCI-II marine fog algorithm, the inter-comparison between GOCI and GOCI-II data showed a small Root Mean Square Error (RMSE) value (0.01) with a high correlation coefficient (0.988). Another input variable, Normalized Localization Standard (NLSD), also shows a reasonable correlation (0.798) between the GOCI and GOCI-II data with a small RMSE value (0.007). We also found distinctive optical characteristics between marine fog and clouds by the GOCI-II observations, showing the narrower distribution of all bands' Rrc values centered at high values for cloud compared to marine fog. The GOCI-II marine fog detection distribution for actual cases is similar to the GOCI but more detailed due to the improved spatial resolution from 500 m to 250 m. The validation with the automated synoptic observing system (ASOS) visibility data confirms the initial reliability of the GOCI-II marine fog detection. Also, it is expected to improve the performance of the GOCI-II marine fog detection algorithm by adding sufficient samples to verify stable performance, improving the post-processing process by replacing real-time available cloud input data and reducing false alarm by adding aerosol information.

Performance Enhancement Algorithm using Supervised Learning based on Background Object Detection for Road Surface Damage Detection (도로 노면 파손 탐지를 위한 배경 객체 인식 기반의 지도 학습을 활용한 성능 향상 알고리즘)

  • Shim, Seungbo;Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.95-105
    • /
    • 2019
  • In recent years, image processing techniques for detecting road surface damaged spot have been actively researched. Especially, it is mainly used to acquire images through a smart phone or a black box that can be mounted in a vehicle and recognize the road surface damaged region in the image using several algorithms. In addition, in conjunction with the GPS module, the exact damaged location can be obtained. The most important technology is image processing algorithm. Recently, algorithms based on artificial intelligence have been attracting attention as research topics. In this paper, we will also discuss artificial intelligence image processing algorithms. Among them, an object detection method based on an region-based convolution neural networks method is used. To improve the recognition performance of road surface damage objects, 600 road surface damaged images and 1500 general road driving images are added to the learning database. Also, supervised learning using background object recognition method is performed to reduce false alarm and missing rate in road surface damage detection. As a result, we introduce a new method that improves the recognition performance of the algorithm to 8.66% based on average value of mAP through the same test database.

Development of Incident Detection Algorithm Using Naive Bayes Classification (나이브 베이즈 분류기를 이용한 돌발상황 검지 알고리즘 개발)

  • Kang, Sunggwan;Kwon, Bongkyung;Kwon, Cheolwoo;Park, Sangmin;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.25-39
    • /
    • 2018
  • The purpose of this study is to develop an efficient incident detection algorithm by applying machine learning, which is being widely used in the transport sector. As a first step, network of the target site was constructed with micro-simulation model. Secondly, data has been collected under various incident scenarios produced with combination of variables that are expected to affect the incident situation. And, detection results from both McMaster algorithm, a well known incident detection algorithm, and the Naive Bayes algorithm, developed in this study, were compared. As a result of comparison, Naive Bayes algorithm showed less negative effect and better detect rate (DR) than the McMaster algorithm. However, as DR increases, so did false alarm rate (FAR). Also, while McMaster algorithm detected in four cycles, Naive Bayes algorithm determine the situation with just one cycle, which increases DR but also seems to have increased FAR. Consequently it has been identified that the Naive Bayes algorithm has a great potential in traffic incident detection.

Filtering-Based Method and Hardware Architecture for Drivable Area Detection in Road Environment Including Vegetation (초목을 포함한 도로 환경에서 주행 가능 영역 검출을 위한 필터링 기반 방법 및 하드웨어 구조)

  • Kim, Younghyeon;Ha, Jiseok;Choi, Cheol-Ho;Moon, Byungin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.51-58
    • /
    • 2022
  • Drivable area detection, one of the main functions of advanced driver assistance systems, means detecting an area where a vehicle can safely drive. The drivable area detection is closely related to the safety of the driver and it requires high accuracy with real-time operation. To satisfy these conditions, V-disparity-based method is widely used to detect a drivable area by calculating the road disparity value in each row of an image. However, the V-disparity-based method can falsely detect a non-road area as a road when the disparity value is not accurate or the disparity value of the object is equal to the disparity value of the road. In a road environment including vegetation, such as a highway and a country road, the vegetation area may be falsely detected as the drivable area because the disparity characteristics of the vegetation are similar to those of the road. Therefore, this paper proposes a drivable area detection method and hardware architecture with a high accuracy in road environments including vegetation areas by reducing the number of false detections caused by V-disparity characteristic. When 289 images provided by KITTI road dataset are used to evaluate the road detection performance of the proposed method, it shows an accuracy of 90.12% and a recall of 97.96%. In addition, when the proposed hardware architecture is implemented on the FPGA platform, it uses 8925 slice registers and 7066 slice LUTs.

An Acoustic Event Detection Method in Tunnels Using Non-negative Tensor Factorization and Hidden Markov Model (비음수 텐서 분해와 은닉 마코프 모델을 이용한 터널 환경에서의 음향 사고 검지 방법)

  • Kim, Nam Kyun;Jeon, Kwang Myung;Kim, Hong Kook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.9
    • /
    • pp.265-273
    • /
    • 2018
  • In this paper, we propose an acoustic event detection method in tunnels using non-negative tensor factorization (NTF) and hidden Markov model (HMM) applied to multi-channel audio signals. Incidents in tunnel are inherent to the system and occur unavoidably with known probability. Incidents can easily happen minor accidents and extend right through to major disaster. Most incident detection systems deploy visual incident detection (VID) systems that often cause false alarms due to various constraints such as night obstacles and a limit of viewing angle. To this end, the proposed method first tries to separate and detect every acoustic event, which is assumed to be an in-tunnel incident, from noisy acoustic signals by using an NTF technique. Then, maximum likelihood estimation using Gaussian mixture model (GMM)-HMMs is carried out to verify whether or not each detected event is an actual incident. Performance evaluation shows that the proposed method operates in real time and achieves high detection accuracy under simulated tunnel conditions.