• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.028 seconds

False Alarm Minimization Technology using SVM in Intrusion Prevention System (SVM을 이용한 침입방지시스템 오경보 최소화 기법)

  • Kim Gill-Han;Lee Hyung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.119-132
    • /
    • 2006
  • The network based security techniques well-known until now have week points to be passive in attacks and susceptible to roundabout attacks so that the misuse detection based intrusion prevention system which enables positive correspondence to the attacks of inline mode are used widely. But because the Misuse detection based Intrusion prevention system is proportional to the detection rules, it causes excessive false alarm and is linked to wrong correspondence which prevents the regular network flow and is insufficient to detect transformed attacks, This study suggests an Intrusion prevention system which uses Support Vector machines(hereinafter referred to as SVM) as one of rule based Intrusion prevention system and Anomaly System in order to supplement these problems, When this compared with existing intrusion prevention system, show performance result that improve about 20% and could through intrusion prevention system that propose false positive minimize and know that can detect effectively about new variant attack.

  • PDF

Design of False Alerts Reducing Model Using Fuzzy Technique for Intrusion Detection System (퍼지기법을 이용한 침입 탐지 시스템 오류경고메시지 축소 모델 설계)

  • Sung, Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.794-798
    • /
    • 2007
  • As the development of information technology and thus the growth of security incidents, so implement are coming out for defense the intrusion about the system. However the error detection program has got a difficulty to find out the intrusions because that has become so many false alert messages. In this study is how to reduce the messages for the false alerts which come from the internal of the network and using the Fuzzy techniques for reduce the uncertainty of the judge. Therefore it makes the model which can decrease false alert message for better detection.

  • PDF

Coward Analysis based Spam SMS Detection Scheme (동시출현 단어분석 기반 스팸 문자 탐지 기법)

  • Oh, Hayoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.3
    • /
    • pp.693-700
    • /
    • 2016
  • Analyzing characteristics of spam text messages had limitations since spam datasets are typically difficult to obtain publicly and previous studies focused on spam email. Although existing studies, such as through the use of spam e-mail characterization and utilization of data mining techniques, there are limitations that influence is limited to high spam detection techniques using a single word character. In this paper, we reveal the characteristics of the spam SMS based on experiment and analysis from different perspectives and propose coward analysis based spam SMS detection scheme with a publicly disclosed spam SMS from the University of Singapore. With the extensive performance evaluations, we show false positive and false negative of the proposed method is less than 2%.

Exploiting Color Segmentation in Pedestrian Upper-body Detection (보행자 상반신 검출에서의 컬러 세그먼테이션 활용)

  • Park, Lae-Jeong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.181-186
    • /
    • 2014
  • The paper proposes a new method of segmentation-based feature extraction to improve performance in pedestrian upper-body detection. General pedestrian detectors that use local features are often plagued by false positives due to the locality. Color information of multi parts of the upper body is utilized in figure-ground segmentation scheme to extract an salient, "global" shape feature capable of reducing the false positives. The performance of the multi-part color segmentation-based feature is evaluated by changing color spaces and the parameters of color histogram. The experimental result from an upper-body dataset shows that the proposed feature is effective in reducing the false positives of local feature-based detectors.

Generate Optimal Number of Features in Mobile Malware Classification using Venn Diagram Intersection

  • Ismail, Najiahtul Syafiqah;Yusof, Robiah Binti;MA, Faiza
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.389-396
    • /
    • 2022
  • Smartphones are growing more susceptible as technology develops because they contain sensitive data that offers a severe security risk if it falls into the wrong hands. The Android OS includes permissions as a crucial component for safeguarding user privacy and confidentiality. On the other hand, mobile malware continues to struggle with permission misuse. Although permission-based detection is frequently utilized, the significant false alarm rates brought on by the permission-based issue are thought to make it inadequate. The present detection method has a high incidence of false alarms, which reduces its ability to identify permission-based attacks. By using permission features with intent, this research attempted to improve permission-based detection. However, it creates an excessive number of features and increases the likelihood of false alarms. In order to generate the optimal number of features created and boost the quality of features chosen, this research developed an intersection feature approach. Performance was assessed using metrics including accuracy, TPR, TNR, and FPR. The most important characteristics were chosen using the Correlation Feature Selection, and the malicious program was categorized using SVM and naive Bayes. The Intersection Feature Technique, according to the findings, reduces characteristics from 486 to 17, has a 97 percent accuracy rate, and produces 0.1 percent false alarms.

AI-Based Intelligent CCTV Detection Performance Improvement (AI 기반 지능형 CCTV 이상행위 탐지 성능 개선 방안)

  • Dongju Ryu;Kim Seung Hee
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.117-123
    • /
    • 2023
  • Recently, as the demand for Generative Artificial Intelligence (AI) and artificial intelligence has increased, the seriousness of misuse and abuse has emerged. However, intelligent CCTV, which maximizes detection of abnormal behavior, is of great help to prevent crime in the military and police. AI performs learning as taught by humans and then proceeds with self-learning. Since AI makes judgments according to the learned results, it is necessary to clearly understand the characteristics of learning. However, it is often difficult to visually judge strange and abnormal behaviors that are ambiguous even for humans to judge. It is very difficult to learn this with the eyes of artificial intelligence, and the result of learning is very many False Positive, False Negative, and True Negative. In response, this paper presented standards and methods for clarifying the learning of AI's strange and abnormal behaviors, and presented learning measures to maximize the judgment ability of intelligent CCTV's False Positive, False Negative, and True Negative. Through this paper, it is expected that the artificial intelligence engine performance of intelligent CCTV currently in use can be maximized, and the ratio of False Positive and False Negative can be minimized..

Adaptive Energy Detection for Spectrum Sensing in Cognitive Radio (인지 무선 시스템에서 스펙트럼 감지를 위한 적응 에너지 검파)

  • Lim, Chang-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.42-46
    • /
    • 2010
  • Energy detection based spectrum sensing compares the energy of a received signal from a primary user with a detection threshold and decides whether it is active or not in the frequency band of interest. Here the detection threshold depends on not only a target false alarm probability but also the level of the noise energy in the band. So, if the noise energy changes, the detection threshold must be adjusted accordingly to maintain the given false alarm probability. Most previous works on energy detection for spectrum sensing are based on the assumption that noise energy is known a priori. In this paper, we present a new energy detection scheme updating its detection threshold under the assumption that the noise is white, and analyze its detection performance. Analytic results show that the proposed scheme can maintain a target false alarm rate without regard to the noise energy level and its spectrum sensing performance gets better as the time bandwidth product of the signal used to estimate the noise energy increases.

An Intelligent Fire Detection Algorithm for Fire Detector

  • Hong, Sung-Ho;Choi, Moon-Su
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.6-10
    • /
    • 2012
  • This paper presents a study on the analysis for reducing the number of false alarms in fire detection system. In order to intelligent algorithm fuzzy logic is adopted in developing fire detection system to reduce false alarm. The intelligent fire detection algorithm compared and analyzed the fire and non-fire signatures measured in circuits simulating flame fire and smoldering fire. The algorithm has input variables obtained by fire experiment with K-type thermocouple and optical smoke sensor. Also triangular membership function is used for inference rules. And the antecedent part of inference rules consists of temperature and smoke density, and the consequent part consists of fire probability. A fire-experiment is conducted with paper, plastic, and n-heptane to simulate actual fire situation. The results show that the intelligent fire detection algorithm suggested in this study can more effectively discriminate signatures between fire and similar fire.

A design of framework for false alarm pattern analysis of intrusion detection system using incremental association rule mining (점진적 연관 규칙을 이용한 침입탐지 시스템의 오 경보 패턴 분석 프레임워크 설계)

  • 전원용;김은희;신문선;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.307-309
    • /
    • 2004
  • 침입탐지시스템에서 발생되는 오 경보는 false positive 와 false negative 로 구분된다. false positive는 실제적인 공격은 아니지만 공격이라고 오인하여 경보를 발생시켜 시스템의 효율성을 떨어뜨리기 때문에 false positive 패턴에 대한 분석이 필요하다. 오 경보 데이터는 시간이 지남에 따라 데이터의 양뿐만 아니라 데이터 패턴의 특성 또한 변하게 된다 따라서 새로운 데이터가 추가될 때마다 오 경보 데이터의 패턴을 분석할 수 있는 도구가 필요하다. 이 논문에서는 오 경보 데이터로부터 false positive 의 패턴을 분석할 수 있는 프레임워크에 대해서 기술한다. 우리의 프레임워크는 시간이 지남에 따라 변하는 데이터의 패턴 특성을 분석할 수 있도록 하기 위해 점진적 연관규칙 기법을 적용한다. 이 프레임워크를 통해서 false positive 패턴 특성의 변화를 효율적으로 관리 할 수 있다.

  • PDF

MXTM-CFAR Processor and Its Performance Analysis (MXTM-CFAR 처리기와 그 성능분석)

  • 김재곤;김응태;송익호;김형명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.7
    • /
    • pp.719-729
    • /
    • 1992
  • An improved MXTM (maximum trimmed mean) -CFAR (constant false alarm rate) processor is proposed to reduce false alarm rates In detecting radar targets and Its performance character is ticsare analyzed to be compared with those of other CFAR processors. The proposed MXTM-CFAR processor is obtained by combining the GO (greatest of ) -CFAR processor reducing excessive falsealarm rate at riutter edges with the TM-CFAR processor showing good performances In homo-geneous Jnonhornog eneous background. Performance analyses have been done by computing detection probability, constant false alarm rate and detection thresholds under the homogeneous or multiple target environments and at the clutter edges. Analysis results how that the proposed CFAR processor maintains its performance as good as those of,05(order statistics) and TM-CFAR inhomogeneous and multiple target environments and Can reduce the false alarm rate at clutter edges. Overall computing time hfs been also reduced.

  • PDF