• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.033 seconds

Real time Background Estimation and Object Tracking (실시간 배경갱신 및 이를 이용한 객체추적)

  • Lee, Wan-Joo
    • The Journal of Information Technology
    • /
    • v.10 no.4
    • /
    • pp.27-39
    • /
    • 2007
  • Object tracking in a real time environment is one of challenging subjects in computer vision area during past couple of years. This paper proposes a method of object detection and tracking using adaptive background estimation in real time environment. To obtain a stable and adaptive background, we combine 3-frame differential method and running average single gaussian background model. Using this background model, we can successfully detect moving objects while minimizing false moving objects caused by noise. In the tracking phase, we propose a matching criteria where the weight of position and inner brightness distribution can be controlled by the size of objects. Also, we adopt a Kalman Filter to overcome the occlusion of tracked objects. By experiments, we can successfully detect and track objects in real time environment.

  • PDF

Automatic Detection of Anomalies in Blood Glucose Using a Machine Learning Approach

  • Zhu, Ying
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • Rapid strides are being made to bring to reality the technology of wearable sensors for monitoring patients' physiological data.We study the problem of automatically detecting anomalies in themeasured blood glucose levels. The normal daily measurements of the patient are used to train a hidden Markov model (HMM). The structure of the HMM-its states and output symbols-are selected to accurately model the typical transitions in blood glucose levels throughout a 24-hour period. The learning of the HMM is done using historic data of normal measurements. The HMM can then be used to detect anomalies in blood glucose levels being measured, if the inferred likelihood of the observed data is low in the world described by the HMM. Our simulation results show that our technique is accurate in detecting anomalies in glucose levels and is robust (i.e., no false positives) in the presence of reasonable changes in the patient's daily routine.

Cooperative Spectrum Sensing with Feedback Error in the Cognitive Radio Systems (무선 인지 시스템에서 궤환 오류를 고려한 협력 스펙트럼 센싱 기법에 관한 연구)

  • Oh, Dong-Chan;Lee, Heui-Chang;Lee, Yong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.364-370
    • /
    • 2010
  • In this paper, we propose a cooperative channel sensing scheme in the presence of feedback errors. Accurate local sensing results may not directly be applied to cooperative sensing due to feedback errors. We consider the cooperative channel sensing that utilizes local sensing results in good feedback channel condition. Finally, simulation results show that the proposed scheme can maximize the detection probability while guaranteeing desired false alarm probability.

Performance Evaluation of IDS based on Anomaly Detection Using Machine Learning Techniques (기계학습 기법에 의한 비정상행위 탐지기반 IDS의 성능 평가)

  • Noh, Young-Ju;Cho, Sung-Bae
    • Annual Conference of KIPS
    • /
    • 2002.11b
    • /
    • pp.965-968
    • /
    • 2002
  • 침입탐지 시스템은 전산시스템을 보호하는 대표적인 수단으로, 오용탐지와 비정상행위탐지 방법으로 나눌 수 있는데, 다양화되는 침입에 대응하기 위해 비정상행위 탐지기법이 활발히 연구되고 있다. 비 정상행위기반 침임탐지 시스템에서는 정상행위 구축 방법에 따라 다양한 침입탐지율과 오류율을 보인다. 본 논문에서는 비정상행위기반 침입탐지시스템을 구축하였는데, 사용되는 대표적인 기계학습 방법인 동등 매칭(Equality Matching), 다층 퍼셉트론(Multi-Layer Perceptron), 은닉마르코프 모델(Hidden Markov Model)을 구현하고 그 성능을 비교하여 보았다. 실험결과 다층 퍼셉트론과 은닉마르코프모델이 높은 침입 탐지율과 낮은 false-positive 오류율을 내어 정상행위로 사용되는 시스템감사 데이터에 대한 정보의 특성을 잘 반영하여 모델링한다는 것을 알 수 있었다.

  • PDF

Detection of onset of failure in prestressed strands by cluster analysis of acoustic emissions

  • Ercolino, Marianna;Farhidzadeh, Alireza;Salamone, Salvatore;Magliulo, Gennaro
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.4
    • /
    • pp.339-355
    • /
    • 2015
  • Corrosion of prestressed concrete structures is one of the main challenges that engineers face today. In response to this national need, this paper presents the results of a long-term project that aims at developing a structural health monitoring (SHM) technology for the nondestructive evaluation of prestressed structures. In this paper, the use of permanently installed low profile piezoelectric transducers (PZT) is proposed in order to record the acoustic emissions (AE) along the length of the strand. The results of an accelerated corrosion test are presented and k-means clustering is applied via principal component analysis (PCA) of AE features to provide an accurate diagnosis of the strand health. The proposed approach shows good correlation between acoustic emissions features and strand failure. Moreover, a clustering technique for the identification of false alarms is proposed.

Improved non-parametric Model for Moving object segmentation by null hypothesis (귀무가설을 이용한 비모수 움직임 영상 검출 모델의 개선)

  • Lee, Ki-Sun;Na, Sang-Il;Lee, Jun-Woo;Jeong, Dong-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.249-250
    • /
    • 2007
  • Background subtraction is a method typically used to segment moving regions in image sequences taken from a static camera by comparing each new frame to a model of the scene background. We present a improved non-parametric background model by null hypothesis. Evaluation shows that this approach achieves very sensitive detection with very low false alarm rates.

  • PDF

Development on Intrusion Detection, Based on Blackboard Architecture (Blackboard 기반의 침입탐지 시스템 개발)

  • Shin, Woo-Chul;Choi, Jong-Uk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.454-460
    • /
    • 2000
  • In this paper, an architecture is suggested which efficiently detects intrusions in network environments. In the architecture, the Blackboardbased agent coordinates opinions of several independent agents which are performing unique functions, by resolving conflicts and reconfirming notices of intrusion. In the simulation, it was found that conventional agents judge simple resource access activities as 'intrusion' while blakcboard-based agent reserves the judgement until additional information confirms notices of independent agents. Reconfirmation process based on additional questioning will roduce positive errors.

  • PDF

Real-time Multiple Open-switch Fault Detection and Fault Localization for a PWM VSI-fed PMSM Drive System (영구자석 동기전동기 구동용 PWM 전압원 인버터의 실시간 다중 스위치 개방고장 검출 및 고장부 판별기법)

  • Song, Jae-Hwan;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.413-414
    • /
    • 2017
  • 영구자석 동기전동기 구동 인버터 시스템 내 스위치 고장은 다양한 조합으로 발생한다. 특히 스위치 개방고장의 경우 다른 전기 부품에 과전류를 유발하여 전체 시스템에 심각한 2차 손상을 초래한다. 본 논문에서는 개방고장 진단 알고리즘의 복잡성을 완화하기 위해 고장 그룹을 분류하여 고장 발생 시 false alarm의 영향을 받지 않고 간단하고 체계적인 방식으로 고장을 식별할 수 있는 기법을 제안한다. 스위치의 개방 고장으로 영구자석 동기전동기 구동 시스템 내 PWM 전압원 인버터의 신뢰성을 향상시키기 위해 3중 스위치 개방고장 진단 및 검출 기법을 제시한다. 제안된 기법은 기존의 개방고장 진단방법과 달리 정보처리를 위해 Moving Filter를 사용함으로써 연산부하를 증가시키지 않고 신속한 고장 검출이 가능하며 별도의 하드웨어 구성없이 구현이 가능하다. 제안된 기법의 안정성과 유효성이 시뮬레이션을 통해 입증된다.

  • PDF

An Intrusion Detection System Using Principle Component Analysis and Time Delay Neural Network (PCA와 TDNN을 이용한 비정상 패킷탐지)

  • Jung, Sung-Yoon;Kang, Byung-Doo;Kim, Sang-Kyoon
    • Annual Conference of KIPS
    • /
    • 2003.05a
    • /
    • pp.285-288
    • /
    • 2003
  • 기존의 침입탐지 시스템은 오용탐지모델이 널리 사용되고 있다. 이 모델은 낮은 오판율(False Alarm rates)을 가지고 있으나 새로운 공격에 대해 전문가시스템(Expert Systems)에 의한 규칙추가를 필요로 하고, 그 규칙과 완전히 매칭되는 시그너처만 공격으로 탐지하므로 변형된 공격을 탐지하지 못한다는 문제점을 가지고 있다. 본 논문에서는 이러한 문제점을 보완하기 위해 주성분분석(Principle Component Analysis ; 이하 PCA)과 시간지연신경망(Time Delay Neural Network ; 이하 TDNN)을 이용한 침입탐지 시스템을 제안한다. 패킷은 PCA를 이용하여 주성분을 결정하고 패킷이미지패턴으로 만든다. 이 연속된 패킷이미지패턴을 시간지연신경망의 학습패턴으로 사용한다.

  • PDF

Masquerade Detection based on SVM and Sequence-based Kernel Method (순서 기반의 커널과 SVM을 사용한 신분위장공격 탐지)

  • Seo Jeongseok;Lee Yeongseok;Kim Han-Sung;Cha Sungdeok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.127-129
    • /
    • 2005
  • 신분위장공격 탐지는 오랫동안 연구되어 왔지만 실제 시스템에 적용되어 사용되기에는 여전이 높은 오탐지율(false alarm)과 낮은 탐지력(detecion rate)이 가장 큰 문제였다. 유닉스 시스템에서 신분위장공격을 탐지하기 위하여 사용자의 유닉스 명령어 행위를 프로파일링하고 정상 프로파일링에서 벗어난 권한 도용을 탐지하는 방법을 사용한다. 본 연구에서는 신분위장공격 탐지 시스템의 탐지력을 높이기 위하여 순서 정보를 반영한 SVM 커널 기법을 고찰하고 실험 결과를 정리하였다.

  • PDF