Object tracking in a real time environment is one of challenging subjects in computer vision area during past couple of years. This paper proposes a method of object detection and tracking using adaptive background estimation in real time environment. To obtain a stable and adaptive background, we combine 3-frame differential method and running average single gaussian background model. Using this background model, we can successfully detect moving objects while minimizing false moving objects caused by noise. In the tracking phase, we propose a matching criteria where the weight of position and inner brightness distribution can be controlled by the size of objects. Also, we adopt a Kalman Filter to overcome the occlusion of tracked objects. By experiments, we can successfully detect and track objects in real time environment.
Rapid strides are being made to bring to reality the technology of wearable sensors for monitoring patients' physiological data.We study the problem of automatically detecting anomalies in themeasured blood glucose levels. The normal daily measurements of the patient are used to train a hidden Markov model (HMM). The structure of the HMM-its states and output symbols-are selected to accurately model the typical transitions in blood glucose levels throughout a 24-hour period. The learning of the HMM is done using historic data of normal measurements. The HMM can then be used to detect anomalies in blood glucose levels being measured, if the inferred likelihood of the observed data is low in the world described by the HMM. Our simulation results show that our technique is accurate in detecting anomalies in glucose levels and is robust (i.e., no false positives) in the presence of reasonable changes in the patient's daily routine.
The Journal of Korean Institute of Communications and Information Sciences
/
v.35
no.4C
/
pp.364-370
/
2010
In this paper, we propose a cooperative channel sensing scheme in the presence of feedback errors. Accurate local sensing results may not directly be applied to cooperative sensing due to feedback errors. We consider the cooperative channel sensing that utilizes local sensing results in good feedback channel condition. Finally, simulation results show that the proposed scheme can maximize the detection probability while guaranteeing desired false alarm probability.
침입탐지 시스템은 전산시스템을 보호하는 대표적인 수단으로, 오용탐지와 비정상행위탐지 방법으로 나눌 수 있는데, 다양화되는 침입에 대응하기 위해 비정상행위 탐지기법이 활발히 연구되고 있다. 비 정상행위기반 침임탐지 시스템에서는 정상행위 구축 방법에 따라 다양한 침입탐지율과 오류율을 보인다. 본 논문에서는 비정상행위기반 침입탐지시스템을 구축하였는데, 사용되는 대표적인 기계학습 방법인 동등 매칭(Equality Matching), 다층 퍼셉트론(Multi-Layer Perceptron), 은닉마르코프 모델(Hidden Markov Model)을 구현하고 그 성능을 비교하여 보았다. 실험결과 다층 퍼셉트론과 은닉마르코프모델이 높은 침입 탐지율과 낮은 false-positive 오류율을 내어 정상행위로 사용되는 시스템감사 데이터에 대한 정보의 특성을 잘 반영하여 모델링한다는 것을 알 수 있었다.
Corrosion of prestressed concrete structures is one of the main challenges that engineers face today. In response to this national need, this paper presents the results of a long-term project that aims at developing a structural health monitoring (SHM) technology for the nondestructive evaluation of prestressed structures. In this paper, the use of permanently installed low profile piezoelectric transducers (PZT) is proposed in order to record the acoustic emissions (AE) along the length of the strand. The results of an accelerated corrosion test are presented and k-means clustering is applied via principal component analysis (PCA) of AE features to provide an accurate diagnosis of the strand health. The proposed approach shows good correlation between acoustic emissions features and strand failure. Moreover, a clustering technique for the identification of false alarms is proposed.
Background subtraction is a method typically used to segment moving regions in image sequences taken from a static camera by comparing each new frame to a model of the scene background. We present a improved non-parametric background model by null hypothesis. Evaluation shows that this approach achieves very sensitive detection with very low false alarm rates.
The Transactions of the Korea Information Processing Society
/
v.7
no.2
/
pp.454-460
/
2000
In this paper, an architecture is suggested which efficiently detects intrusions in network environments. In the architecture, the Blackboardbased agent coordinates opinions of several independent agents which are performing unique functions, by resolving conflicts and reconfirming notices of intrusion. In the simulation, it was found that conventional agents judge simple resource access activities as 'intrusion' while blakcboard-based agent reserves the judgement until additional information confirms notices of independent agents. Reconfirmation process based on additional questioning will roduce positive errors.
영구자석 동기전동기 구동 인버터 시스템 내 스위치 고장은 다양한 조합으로 발생한다. 특히 스위치 개방고장의 경우 다른 전기 부품에 과전류를 유발하여 전체 시스템에 심각한 2차 손상을 초래한다. 본 논문에서는 개방고장 진단 알고리즘의 복잡성을 완화하기 위해 고장 그룹을 분류하여 고장 발생 시 false alarm의 영향을 받지 않고 간단하고 체계적인 방식으로 고장을 식별할 수 있는 기법을 제안한다. 스위치의 개방 고장으로 영구자석 동기전동기 구동 시스템 내 PWM 전압원 인버터의 신뢰성을 향상시키기 위해 3중 스위치 개방고장 진단 및 검출 기법을 제시한다. 제안된 기법은 기존의 개방고장 진단방법과 달리 정보처리를 위해 Moving Filter를 사용함으로써 연산부하를 증가시키지 않고 신속한 고장 검출이 가능하며 별도의 하드웨어 구성없이 구현이 가능하다. 제안된 기법의 안정성과 유효성이 시뮬레이션을 통해 입증된다.
기존의 침입탐지 시스템은 오용탐지모델이 널리 사용되고 있다. 이 모델은 낮은 오판율(False Alarm rates)을 가지고 있으나 새로운 공격에 대해 전문가시스템(Expert Systems)에 의한 규칙추가를 필요로 하고, 그 규칙과 완전히 매칭되는 시그너처만 공격으로 탐지하므로 변형된 공격을 탐지하지 못한다는 문제점을 가지고 있다. 본 논문에서는 이러한 문제점을 보완하기 위해 주성분분석(Principle Component Analysis ; 이하 PCA)과 시간지연신경망(Time Delay Neural Network ; 이하 TDNN)을 이용한 침입탐지 시스템을 제안한다. 패킷은 PCA를 이용하여 주성분을 결정하고 패킷이미지패턴으로 만든다. 이 연속된 패킷이미지패턴을 시간지연신경망의 학습패턴으로 사용한다.
Seo Jeongseok;Lee Yeongseok;Kim Han-Sung;Cha Sungdeok
Proceedings of the Korean Information Science Society Conference
/
2005.07a
/
pp.127-129
/
2005
신분위장공격 탐지는 오랫동안 연구되어 왔지만 실제 시스템에 적용되어 사용되기에는 여전이 높은 오탐지율(false alarm)과 낮은 탐지력(detecion rate)이 가장 큰 문제였다. 유닉스 시스템에서 신분위장공격을 탐지하기 위하여 사용자의 유닉스 명령어 행위를 프로파일링하고 정상 프로파일링에서 벗어난 권한 도용을 탐지하는 방법을 사용한다. 본 연구에서는 신분위장공격 탐지 시스템의 탐지력을 높이기 위하여 순서 정보를 반영한 SVM 커널 기법을 고찰하고 실험 결과를 정리하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.