• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.025 seconds

Target Detection Using Texture Features and Neural Network in Infrared Images (적외선영상에서 질감 특징과 신경회로망을 이용한 표적탐지)

  • Sun, Sun-Gu
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.62-68
    • /
    • 2010
  • This study is to identify target locations with low false alarms on thermal infrared images obtained from natural environment. The proposed method is different from the previous researches because it uses morphology filters for Gabor response images instead of an intensity image in initial detection stage. This method does not need precise extracting a target silhouette to distinguish true targets or clutters. It comprises three distinct stages. First, morphological operations and adaptive thresholding are applied to the summation image of four Gabor responses of an input image to find out salient regions. The locations of extracted regions can be classified into targets or clutters. Second, local texture features are computed from salient regions of an input image. Finally, the local texture features are compared with the training data to distinguish between true targets and clutters. The multi-layer perceptron having three layers is used as a classifier. The performance of the proposed method is proved by using natural infrared images. Therefore it can be applied to real automatic target detection systems.

Cooperative Spectrum Sensing with Distance Based Weight for Cognitive Radio Systems (인지무선 시스템을 위한 거리기반 가중치가 적용된 협력 스펙트럼 센싱)

  • Lee, So-Young;Lee, Jae-Jin;Kim, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.45-50
    • /
    • 2010
  • In this paper, we analysis the performance of cooperative spectrum sensing with distance based weight for cognitive radio (CR) systems and CR systems sense the spectrum of the licensed user by using a energy detection method. Threshold is determined in accordance with the constant false alarm rate (CFAR) algorithm for energy detection. The signal of licensed user is OFDM signal and the wireless channel between a licensed user and CR systems is modeled as Gaussian channel. From the simulation results, the cooperative spectrum sensing with distance based weight combining (DWC) and equal gain combing (EGC) methods shows higher spectrum sensing performance than single spectrum sensing does. And the detection probability performance with the DWC is higher than that with the EGC.

Ground Penetrating Radar System for Landmine Detection Using 48 Channel UWB Impulse Radar (지뢰탐지용 48채널 배열 UWB 임펄스 레이더 방식 지면투과레이더시스템 개발)

  • Kwon, Ji-Hoon;Kwak, No-Jun;Ha, Seoung-Jae;Han, Seung-Hoon;Yoon, Yeo-Sun;Yang, DongWon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.3-12
    • /
    • 2016
  • This paper describes the development of the ground penetrating radar (GPR) system using UWB impulse radar with 48 Channel array. GPR is an effective alternative technology to resolve th disadvantages of metal detectors. Metal detectors have a very low detection probability of non-metallic landmine and high false alarm rates caused by metallic materials under the ground. In this paper, we use the mono-cycle pulse waveform with about 600 ps pulse width to obtain high resolution landmine microwave images. In order to analyze performances of this system, we utilize indoor test facility that made up of rough sandy loam which representative Korean soil. The mimic landmine models of metal/non-metal and anti-tank/anti-personnel landmines buried in DMZ (demilitarized zone) of Korea are used to analyze the detection depth and the shape of the mines using microwave image.

Successful First Round Results of a Turkish Breast Cancer Screening Program with Mammography in Bahcesehir, Istanbul

  • Kayhan, Arda;Gurdal, Sibel Ozkan;Ozaydin, Nilufer;Cabioglu, Neslihan;Ozturk, Enis;Ozcinar, Beyza;Aribal, Erkin;Ozmen, Vahit
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1693-1697
    • /
    • 2014
  • Background: The Bahcesehir Breast Cancer Screening Project is the first organized population based breast cancer mammographic screening project in Turkey. The objective of this prospective observational study was to demonstrate the feasibility of a screening program in a developing country and to determine the appropriate age (40 or 50 years old) to start with screening in Turkish women. Materials and Methods: Between January 2009 to December 2010, a total of 3,758 women aged 40-69 years were recruited in this prospective study. Screening was conducted biannually, and five rounds were planned. After clinical breast examination (CBE), two-view mammograms were obtained. True positivity, false positivity, positive predictive values (PPV) according to ACR, cancer detection rate, minimal cancer detection rate, axillary node positivity and recall rate were calculated. Breast ultrasound and biopsy were performed in suspicious cases. Results: Breast biopsy was performed in 55 patients, and 18 cancers were detected in the first round. The overall cancer detection rate was 4.8 per 1,000 women. Most of the screened women (54%) and detected cancers (56%) were in women aged 40-49. Ductal carcinoma in situ (DCIS) and stage I cancer and axillary node positivity rates were 22%, 61%, and 16.6%, respectively. The positive predictivity for biopsy was 32.7%, whereas the overall recall rate was 18.4 %. Conclusions: Preliminary results of the study suggest that population based organized screening are feasible and age of onset of mammographic screening should be 40 years in Turkey.

Anomaly Data Detection Using Machine Learning in Crowdsensing System (크라우드센싱 시스템에서 머신러닝을 이용한 이상데이터 탐지)

  • Kim, Mihui;Lee, Gihun
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.475-485
    • /
    • 2020
  • Recently, a crowdsensing system that provides a new sensing service with real-time sensing data provided from a user's device including a sensor without installing a separate sensor has attracted attention. In the crowdsensing system, meaningless data may be provided due to a user's operation error or communication problem, or false data may be provided to obtain compensation. Therefore, the detection and removal of the abnormal data determines the quality of the crowdsensing service. The proposed methods in the past to detect these anomalies are not efficient for the fast-changing environment of crowdsensing. This paper proposes an anomaly data detection method by extracting the characteristics of continuously and rapidly changing sensing data environment by using machine learning technology and modeling it with an appropriate algorithm. We show the performance and feasibility of the proposed system using deep learning binary classification model of supervised learning and autoencoder model of unsupervised learning.

Face Detection Method Based on Color Constancy and Geometrical Analysis (색 항등성과 기하학적 분석 기반 얼굴 검출 기법)

  • Lee, Woo-Ram;Hwang, Dong-Guk;Jun, Byoung-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.59-66
    • /
    • 2011
  • In this paper, we propose a face detection method based on color constancy and geometrical analysis. With the problem about the various colors of skin under scene illuminant, a color constancy method is applied to input images and geometrical analysis is used to detect face regions. At first, the candidates of face or hair are extracted from the image that a color constancy method is applied to, and are classified by some geometrical criterions. And then, face candidates which have some intersectional regions whose total is over a certain size, with hair candidates are selected as faces. Caltech Face DB was used to compare the performance of our method. Also, performance about scene illuminant was evaluated by images which have some illumination effects. The experiment results show that the proposed face detection method was applicable to various facial images because of high true-positive and low false-negative ration.

Fake News Detection for Korean News Using Text Mining and Machine Learning Techniques (텍스트 마이닝과 기계 학습을 이용한 국내 가짜뉴스 예측)

  • Yun, Tae-Uk;Ahn, Hyunchul
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.1
    • /
    • pp.19-32
    • /
    • 2018
  • Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection method using Artificial Intelligence techniques over the past years. But, unfortunately, there have been no prior studies proposed an automated fake news detection method for Korean news. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (Topic Modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as multiple discriminant analysis, case based reasoning, artificial neural networks, and support vector machine can be applied. To validate the effectiveness of the proposed method, we collected 200 Korean news from Seoul National University's FactCheck (http://factcheck.snu.ac.kr). which provides with detailed analysis reports from about 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

The Ontology-Based Intelligent Solution for Managing U-Cultural Heritage: Early Fire Detection Systems (U-문화재관리를 위한 온톨로지 기반의 지능형 솔루션: 화재조기탐지 시스템)

  • Joo, Jae-Hun;Myeong, Sung-Jae
    • Information Systems Review
    • /
    • v.12 no.2
    • /
    • pp.89-104
    • /
    • 2010
  • Recently, ubiquitous sensor network (USN) has been applied to many areas including environment monitoring. A few studies applied the USN to disaster prevention and emergency management, in particular, aiming to conserve cultural heritage. USN is an useful technology to do online real-time monitoring for the purpose of early detection of the fire which is a critical cause of damage and destruction of cultural heritages. It is necessary to online monitor the cultural heritages that human has a difficulty to access or their external appearance and beauty are important, by using the USN. However, there exists false warning from USN-based monitoring systems without human intervention. In this paper, we presented an alternative to resolve the problem by applying ontology. Our intelligent fire early detection systems for conserving cultural heritages are based on ontology and inference rules, and tested under laboratory environments.

Robust Pupil Detection using Rank Order Filter and Pixel Difference (Rank Order Filter와 화소값 차이를 이용한 강인한 눈동자 검출)

  • Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1383-1390
    • /
    • 2012
  • In this paper, we propose a robust pupil detection method using rank order filter and pixel value difference in facial image. We have detected the potential pupil candidates using rank order filter. Many false pupil candidates found at eyebrow are removed using the fact that the pixel difference is much at the boundary between pupil and sclera. The rest pupil candidates are grouped into pairs. Each pair is verified according to geometric constraints such as the angle and the distance between two candidates. A fitness function is obtained for each pair using the pixel values of two pupil regions, we select a pair with the smallest fitness value as a final pupil. The experiments have been performed for 400 images of the BioID face database. The results show that it achieves more than 90% accuracy, and especially the proposed method improves the detection rate and high accuracy for face with spectacle.

A Motion Adaptive Deinterlacing Algorithm Using Improved Motion Detection (향상된 움직임 탐색 기법을 적용한 움직임 적응적 디인터레이싱 알고리듬)

  • Yun, Janghyeok;Jeon, Gwanggil;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.167-177
    • /
    • 2013
  • In this paper, a motion adaptive deinterlacing algorithm is proposed. It consists of three parts: (1) modified edge-based line average, (2) pixel-based consequent five-field motion detection, and (3) block-based local characteristic for detecting true motion and calculating the motion intensity by using an improved method which is able to detect the inner part of moving objects precisely as well as to reduce the risk of false detection caused by intrinsic noises in the image. Depending on the detected motion activity level, it combines spatial and temporal methods with weighting factor. Simulations conducted on several video sequences indicate that the performance of the proposed method is superior to the conventional methods in terms of both subjective and objective video quality.