• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.028 seconds

Driver's Face Detection Using Space-time Restrained Adaboost Method

  • Liu, Tong;Xie, Jianbin;Yan, Wei;Li, Peiqin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2341-2350
    • /
    • 2012
  • Face detection is the first step of vision-based driver fatigue detection method. Traditional face detection methods have problems of high false-detection rates and long detection times. A space-time restrained Adaboost method is presented in this paper that resolves these problems. Firstly, the possible position of a driver's face in a video frame is measured relative to the previous frame. Secondly, a space-time restriction strategy is designed to restrain the detection window and scale of the Adaboost method to reduce time consumption and false-detection of face detection. Finally, a face knowledge restriction strategy is designed to confirm that the faces detected by this Adaboost method. Experiments compare the methods and confirm that a driver's face can be detected rapidly and precisely.

Shot Boundary Detection Using Relative Difference between Two Frames (프레임간의 상대적인 차이를 이용한 비디오의 셔트 검출 기법)

  • 정인식;권오진
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.101-104
    • /
    • 2001
  • This paper proposes a unique shot boundary detection algorithm for the video indexing and/or browsing. Conventional methods based on the frame differences and the histogram differences are improved. Instead of using absolute frame differences, block by block based relative frame differences are employed. Frame adaptive thresholding values are also employed for the better detection. for the cases that the frame differences are not enough to detect the shot boundary, histogram differences are selectively applied. Experimental results show that the proposed algorithm reduces both the “false positive” errors and the “false negative” errors especially for the videos of dynamic local and/or global motions

  • PDF

Detection of Group of Targets Using High Resolution Satellite SAR and EO Images (고해상도 SAR 영상 및 EO 영상을 이용한 표적군 검출 기법 개발)

  • Kim, So-Yeon;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.111-125
    • /
    • 2015
  • In this study, the target detection using both high-resolution satellite SAR and Elecro-Optical (EO) images such as TerraSAR-X and WorldView-2 is performed, considering the characteristics of targets. The targets of our interest are featured by being stationary and appearing as cluster targets. After the target detection of SAR image by using Constant False Alarm Rate (CFAR) algorithm, a series of processes is performed in order to reduce false alarms, including pixel clustering, network clustering and coherence analysis. We extend further our algorithm by adopting the fast and effective ellipse detection in EO image using randomized hough transform, which is significantly reducing the number of false alarms. The performance of proposed algorithm has been tested and analyzed on TerraSAR-X SAR and WordView-2 EO images. As a result, the average false alarm for group of targets is 1.8 groups/$64km^2$ and the false alarms of single target range from 0.03 to 0.3 targets/$km^2$. The results show that groups of targets are successfully identified with very low false alarms.

Computer-Aided Detection with Automated Breast Ultrasonography for Suspicious Lesions Detected on Breast MRI

  • Kim, Sanghee;Kang, Bong Joo;Kim, Sung Hun;Lee, Jeongmin;Park, Ga Eun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.46-54
    • /
    • 2019
  • Purpose: The aim of this study was to evaluate the diagnostic performance of a computer-aided detection (CAD) system used with automated breast ultrasonography (ABUS) for suspicious lesions detected on breast MRI, and CAD-false lesions. Materials and Methods: We included a total of 40 patients diagnosed with breast cancer who underwent ABUS (ACUSON S2000) to evaluate multiple suspicious lesions found on MRI. We used CAD ($QVCAD^{TM}$) in all the ABUS examinations. We evaluated the diagnostic accuracy of CAD and analyzed the characteristics of CAD-detected lesions and the factors underlying false-positive and false-negative cases. We also analyzed false-positive lesions with CAD on ABUS. Results: Of a total of 122 suspicious lesions detected on MRI in 40 patients, we excluded 51 daughter nodules near the main breast cancer within the same quadrant and included 71 lesions. We also analyzed 23 false-positive lesions using CAD with ABUS. The sensitivity, specificity, positive predictive value, and negative predictive value of CAD (for 94 lesions) with ABUS were 75.5%, 44.4%, 59.7%, and 62.5%, respectively. CAD facilitated the detection of 81.4% (35/43) of the invasive ductal cancer and 84.9% (28/33) of the invasive ductal cancer that showed a mass (excluding non-mass). CAD also revealed 90.3% (28/31) of the invasive ductal cancers measuring larger than 1 cm (excluding non-mass and those less than 1 cm). The mean sizes of the true-positive versus false-negative mass lesions were $2.08{\pm}0.85cm$ versus $1.6{\pm}1.28cm$ (P < 0.05). False-positive lesions included sclerosing adenosis and usual ductal hyperplasia. In a total of 23 false cases of CAD, the most common (18/23) cause was marginal or subareolar shadowing, followed by three simple cysts, a hematoma, and a skin wart. Conclusion: CAD with ABUS showed promising sensitivity for the detection of invasive ductal cancer showing masses larger than 1 cm on MRI.

Design of Hybrid Network Probe Intrusion Detector using FCM

  • Kim, Chang-Su;Lee, Se-Yul
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • The advanced computer network and Internet technology enables connectivity of computers through an open network environment. Despite the growing numbers of security threats to networks, most intrusion detection identifies security attacks mainly by detecting misuse using a set of rules based on past hacking patterns. This pattern matching has a high rate of false positives and can not detect new hacking patterns, making it vulnerable to previously unidentified attack patterns and variations in attack and increasing false negatives. Intrusion detection and prevention technologies are thus required. We proposed a network based hybrid Probe Intrusion Detection model using Fuzzy cognitive maps (PIDuF) that detects intrusion by DoS (DDoS and PDoS) attack detection using packet analysis. A DoS attack typically appears as a probe and SYN flooding attack. SYN flooding using FCM model captures and analyzes packet information to detect SYN flooding attacks. Using the result of decision module analysis, which used FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. For the performance evaluation, the "IDS Evaluation Data Set" created by MIT was used. From the simulation we obtained the max-average true positive rate of 97.064% and the max-average false negative rate of 2.936%. The true positive error rate of the PIDuF is similar to that of Bernhard's true positive error rate.

An Aggregate Detection of Event Correlation using Fuzzy Control (퍼지제어를 이용한 관련성 통합탐지)

  • 김용민
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.3
    • /
    • pp.135-144
    • /
    • 2003
  • An intrusion detection system shows different result over overall detection area according to its detection characteristics of inner detection algorithms or techniques. To expand detection areas, we requires an integrated detection which can be archived both by deploying a few detection systems which detect different detection areas and by combining their results. In addition to expand detection areas, we need to decrease the workload of security managers by false alarms and improve the correctness by minimizing false alerts which happen during the process of integration. In this paper, a method for aggregation detection use fuzzy inference to integrate a vague detection results which imply the characteristics of detection systems. Their analyzed detection characteristics are expressed as fuzzy membership functions and fuzzy rule bases which are applied through the process of fuzzy control. And, it integrate a vague decision results and minimize the number of false alerts by reflecting the characteristics of detection systems. Also it does minimize inference objects by applying thresholds decided through several experiments.

Improved Facial Component Detection Using Variable Parameter and Verification (가변 변수와 검증을 이용한 개선된 얼굴 요소 검출)

  • Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.378-383
    • /
    • 2020
  • Viola & Jones' object detection algorithm is a very good algorithm for the face component(FC) detection, but there are still problems such as duplicate detection, false detection and non-detection due to parameter setting. This paper proposes an improved FC detection algorithm that applies the variable parameter to reduce non-detection and the verification to reduce duplicate detection and false detection to the Viola & Jones' algorithm. The proposed algorithm reduces the non-detection by changing the parameter value of the Viola & Jones' algorithm until the potential valid FCs are detected, and eliminates the duplicate detection and the false detection by using the verification that evaluates size, position, and uniqueness of the detected FCs. Simulation results show that the proposed algorithm includes valid FCs in the detected objects and then detects only the valid FCs by removing invalid FCs from them.

Automatic False-Alarm Labeling for Sensor Data

  • Adi, Taufik Nur;Bae, Hyerim;Wahid, Nur Ahmad
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • A false alarm, which is an incorrect report of an emergency, could trigger an unnecessary action. The predictive maintenance framework developed in our previous work has a feature whereby a machine alarm is triggered based on sensor data evaluation. The sensor data evaluator performs three essential evaluation steps. First, it evaluates each sensor data value based on its threshold (lower and upper bound) and labels the data value as "alarm" when the threshold is exceeded. Second, it calculates the duration of the occurrence of the alarm. Finally, in the third step, a domain expert is required to assess the results from the previous two steps and to determine, thereby, whether the alarm is true or false. There are drawbacks of the current evaluation method. It suffers from a high false-alarm ratio, and moreover, given the vast amount of sensor data to be assessed by the domain expert, the process of evaluation is prolonged and inefficient. In this paper, we propose a method for automatic false-alarm labeling that mimics how the domain expert determines false alarms. The domain expert determines false alarms by evaluating two critical factors, specifically the duration of alarm occurrence and identification of anomalies before or while the alarm occurs. In our proposed method, Hierarchical Temporal Memory (HTM) is utilized to detect anomalies. It is an unsupervised approach that is suitable to our main data characteristic, which is the lack of an example of the normal form of sensor data. The result shows that the technique is effective for automatic labeling of false alarms in sensor data.

Design of Web based ID Traffic Analysis System (웹기반의 침입탐지 트래픽 분석 시스템 설계)

  • 한순재;오창석
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.144-148
    • /
    • 2003
  • A general administrator's response ability plunged in confusion as intrusion detection system like an existing Snort display much alert messages on administrator's screen. Also, there are some possibilities to cause false positive. In this paper, to solve these problems, we designed Web-based ID(Intrusion Detection) traffic analysis system using correlation, and implemented so that administrator can check easily whole intrusion traffic state in web which dividing into normal and intrusion traffic using Libpcap, Snort, ACID, Nmap and Nessus. As a simulation result, it is proved that alert message number and false positive rate are minimized.

  • PDF

Improved PCA method for sensor fault detection and isolation in a nuclear power plant

  • Li, Wei;Peng, Minjun;Wang, Qingzhong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.146-154
    • /
    • 2019
  • An improved principal component analysis (PCA) method is applied for sensor fault detection and isolation (FDI) in a nuclear power plant (NPP) in this paper. Data pre-processing and false alarm reducing methods are combined with general PCA method to improve the model performance in practice. In data pre-processing, singular points and random fluctuations in the original data are eliminated with various techniques respectively. In fault detecting, a statistics-based method is proposed to reduce the false alarms of $T^2$ and Q statistics. Finally, the effects of the proposed data pre-processing and false alarm reducing techniques are evaluated with sensor measurements from a real NPP. They are proved to be greatly beneficial to the improvement on the reliability and stability of PCA model. Meanwhile various sensor faults are imposed to normal measurements to test the FDI ability of the PCA model. Simulation results show that the proposed PCA model presents favorable performance on the FDI of sensors no matter with major or small failures.