• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.034 seconds

Measuring of Effectiveness of Tracking Based Accident Detection Algorithm Using Gaussian Mixture Model (가우시안 배경혼합모델을 이용한 Tracking기반 사고검지 알고리즘의 적용 및 평가)

  • Oh, Ju-Taek;Min, Jun-Young
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.77-85
    • /
    • 2012
  • Most of Automatic Accident Detection Algorithm has a problem of detecting an accident as traffic congestion. Actually, center's managers deal with accidents depend on watching CCTV or accident report by drivers even though they run the Automatic Accident Detection system. It is because of the system's detecting errors such as detecting non-accidents as accidents, and it makes decreasing in the system's overall reliability. It means that Automatic Accident Detection Algorithm should not only have high detection probability but also have low false alarm probability, and it has to detect accurate accident spot. The study tries to verify and evaluate the effectiveness of using Gaussian Mixture Model and individual vehicle tracking to adapt Accident Detection Algorithm to Center Management System by measuring accident detection probability and false alarm probability's frequency in the real accident.

Preprocessing Technique for Lane Detection Using Image Clustering and HSV Color Model (영상 클러스터링과 HSV 컬러 모델을 이용한 차선 검출 전처리 기법)

  • Choi, Na-Rae;Choi, Sang-Il
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.144-152
    • /
    • 2017
  • Among the technologies for implementing autonomous vehicles, advanced driver assistance system is a key technology to support driver's safe driving. In the technology using the vision sensor having a high utility, various preprocessing methods are used prior to feature extraction for lane detection. However, in the existing methods, the unnecessary lane candidates such as cars, lawns, and road separator in the road area are false positive. In addition, there are cases where the lane candidate itself can not be extracted in the area under the overpass, the lane within the dark shadow, the center lane of yellow, and weak lane. In this paper, we propose an efficient preprocessing method using k-means clustering for image division and the HSV color model. When the proposed preprocessing method is applied, the true positive region is maximally maintained during the lane detection and many false positive regions are removed.

Behavior based Routing Misbehavior Detection in Wireless Sensor Networks

  • Terence, Sebastian;Purushothaman, Geethanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5354-5369
    • /
    • 2019
  • Sensor networks are deployed in unheeded environment to monitor the situation. In view of the unheeded environment and by the nature of their communication channel sensor nodes are vulnerable to various attacks most commonly malicious packet dropping attacks namely blackhole, grayhole attack and sinkhole attack. In each of these attacks, the attackers capture the sensor nodes to inject fake details, to deceive other sensor nodes and to interrupt the network traffic by packet dropping. In all such attacks, the compromised node advertises itself with fake routing facts to draw its neighbor traffic and to plunge the data packets. False routing advertisement play vital role in deceiving genuine node in network. In this paper, behavior based routing misbehavior detection (BRMD) is designed in wireless sensor networks to detect false advertiser node in the network. Herein the sensor nodes are monitored by its neighbor. The node which attracts more neighbor traffic by fake routing advertisement and involves the malicious activities such as packet dropping, selective packet dropping and tampering data are detected by its various behaviors and isolated from the network. To estimate the effectiveness of the proposed technique, Network Simulator 2.34 is used. In addition packet delivery ratio, throughput and end-to-end delay of BRMD are compared with other existing routing protocols and as a consequence it is shown that BRMD performs better. The outcome also demonstrates that BRMD yields lesser false positive (less than 6%) and false negative (less than 4%) encountered in various attack detection.

Efficient Illegal Contents Detection and Attacker Profiling in Real Environments

  • Kim, Jin-gang;Lim, Sueng-bum;Lee, Tae-jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2115-2130
    • /
    • 2022
  • With the development of over-the-top (OTT) services, the demand for content is increasing, and you can easily and conveniently acquire various content in the online environment. As a result, copyrighted content can be easily copied and distributed, resulting in serious copyright infringement. Some special forms of online service providers (OSP) use filtering-based technologies to protect copyrights, but illegal uploaders use methods that bypass traditional filters. Uploading with a title that bypasses the filter cannot use a similar search method to detect illegal content. In this paper, we propose a technique for profiling the Heavy Uploader by normalizing the bypassed content title and efficiently detecting illegal content. First, the word is extracted from the normalized title and converted into a bit-array to detect illegal works. This Bloom Filter method has a characteristic that there are false positives but no false negatives. The false positive rate has a trade-off relationship with processing performance. As the false positive rate increases, the processing performance increases, and when the false positive rate decreases, the processing performance increases. We increased the detection rate by directly comparing the word to the result of increasing the false positive rate of the Bloom Filter. The processing time was also as fast as when the false positive rate was increased. Afterwards, we create a function that includes information about overall piracy and identify clustering-based heavy uploaders. Analyze the behavior of heavy uploaders to find the first uploader and detect the source site.

Design of T-N2SCD Detection Model based on Time Window (타임 윈도우 기반의 T-N2SCD 탐지 모델 구현)

  • Shin, Mi-Yea;Won, Il-Young;Lee, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2341-2348
    • /
    • 2009
  • An intrusion detection technique based on host consider system call sequence or system call arguments. These two ways are suitable when system call sequence or order and length of system call arguments are out of order. However, there are two disadvantages which a false positive rate and a false negative rate are high. In this paper we propose the T-N2SCD detection model based on Time Window in order to reduce false positive rate and false negative rate. Data for using this experiment is provided from DARPA. As experimental results, the proposed model showed that the false positive rate and the false negative rate are lowest at an interval of 1000ms than at different intervals.

Automatically Diagnosing Skull Fractures Using an Object Detection Method and Deep Learning Algorithm in Plain Radiography Images

  • Tae Seok, Jeong;Gi Taek, Yee; Kwang Gi, Kim;Young Jae, Kim;Sang Gu, Lee;Woo Kyung, Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Objective : Deep learning is a machine learning approach based on artificial neural network training, and object detection algorithm using deep learning is used as the most powerful tool in image analysis. We analyzed and evaluated the diagnostic performance of a deep learning algorithm to identify skull fractures in plain radiographic images and investigated its clinical applicability. Methods : A total of 2026 plain radiographic images of the skull (fracture, 991; normal, 1035) were obtained from 741 patients. The RetinaNet architecture was used as a deep learning model. Precision, recall, and average precision were measured to evaluate the deep learning algorithm's diagnostic performance. Results : In ResNet-152, the average precision for intersection over union (IOU) 0.1, 0.3, and 0.5, were 0.7240, 0.6698, and 0.3687, respectively. When the intersection over union (IOU) and confidence threshold were 0.1, the precision was 0.7292, and the recall was 0.7650. When the IOU threshold was 0.1, and the confidence threshold was 0.6, the true and false rates were 82.9% and 17.1%, respectively. There were significant differences in the true/false and false-positive/false-negative ratios between the anterior-posterior, towne, and both lateral views (p=0.032 and p=0.003). Objects detected in false positives had vascular grooves and suture lines. In false negatives, the detection performance of the diastatic fractures, fractures crossing the suture line, and fractures around the vascular grooves and orbit was poor. Conclusion : The object detection algorithm applied with deep learning is expected to be a valuable tool in diagnosing skull fractures.

Improved Fusion Method of Detection Features in SAR ATR System (SAR 자동표적인식 시스템에서의 탐지특징 결합 방법 개선 방안)

  • Cha, Min-Jun;Kim, Hyung-Myung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.461-469
    • /
    • 2010
  • In this paper, we have proposed an improved fusion method of detection features which can enhance the detection probability under the given false alarm rate in the prescreening stage of SAR ATR(Synthetic Aperture Radar Automatic Target Recognition) system. Since the detection features have the positive correlation, the detection performance can be improved if the joint probability distribution of detection features is considered in the fusion process. The detection region is designed as a simple piecewise linear function which can be represented by few parameters. The parameters for the detection region can be derived by training the sample SAR images to maximize the detection probability with the given false alarm rate. Simulation result shows that the detection performance of the proposed method is improved for all combinations of detection features.

False Alarm Filtering Algorithm Development of Pipeline Leak Detection System using Flow Volume Balance (유량 밸런스 특성을 활용한 송유관 누유 감지 시스템의 오알람 필터링 알고리즘 개발)

  • Kim, Min-Sung;Kim, Hie-Sik;Jung, Hae-Kyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.95-102
    • /
    • 2016
  • Pipeline is making the most use of transportation of petroleum products on the land. But due to tremendous accident or environmental disaster by oil pipeline leak or pipeline stolen, leak detection systems have been used for preventing it. Leak detection method based on negative pressure wave has been used at the long distance pipeline. But even if it has showed good leak detection quality, due to making a lot of false alarm, it has weak point that disturbs concentration to system. This study suggests algorithm and method of using volume balance to decrease false-alarm of pipeline leak detection system based on negative pressure wave.

Techniques for Improving Host-based Anomaly Detection Performance using Attack Event Types and Occurrence Frequencies

  • Juyeon Lee;Daeseon Choi;Seung-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.89-101
    • /
    • 2023
  • In order to prevent damages caused by cyber-attacks on nations, businesses, and other entities, anomaly detection techniques for early detection of attackers have been consistently researched. Real-time reduction and false positive reduction are essential to promptly prevent external or internal intrusion attacks. In this study, we hypothesized that the type and frequency of attack events would influence the improvement of anomaly detection true positive rates and reduction of false positive rates. To validate this hypothesis, we utilized the 2015 login log dataset from the Los Alamos National Laboratory. Applying the preprocessed data to representative anomaly detection algorithms, we confirmed that using characteristics that simultaneously consider the type and frequency of attack events is highly effective in reducing false positives and execution time for anomaly detection.

A Highly Reliable Fall Detection System for The Elderly in Real-Time Environment (실시간 환경에서 노인들을 위한 고신뢰도 낙상 검출 시스템)

  • Lee, Young-Sook;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.401-406
    • /
    • 2008
  • Fall event detection is one of the most common problems for elderly people, especially those living alone because falls result in serious injuries such as joint dislocations, fractures, severe head injuries or even death. In order to prevent falls or fall-related injuries, several previous methods based on video sensor showed low fall detection rates in recent years. To improve this problem and outperform the system performance, this paper presented a novel approach for fall event detection in the elderly using a subtraction between successive difference images and temporal templates in real time environment. The proposed algorithm obtained the successful detection rate of 96.43% and the low false positive rate of 3.125% even though the low-quality video sequences are obtained by a USB PC camera sensor. The experimental results have shown very promising performance in terms of high detection rate and low false positive rate.