• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.03 seconds

A Comparative Study on the Performance of Intrusion Detection using Decision Tree and Artificial Neural Network Models (의사결정트리와 인공 신경망 기법을 이용한 침입탐지 효율성 비교 연구)

  • Jo, Seongrae;Sung, Haengnam;Ahn, Byunghyuk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.33-45
    • /
    • 2015
  • Currently, Internet is used an essential tool in the business area. Despite this importance, there is a risk of network attacks attempting collection of fraudulence, private information, and cyber terrorism. Firewalls and IDS(Intrusion Detection System) are tools against those attacks. IDS is used to determine whether a network data is a network attack. IDS analyzes the network data using various techniques including expert system, data mining, and state transition analysis. This paper tries to compare the performance of two data mining models in detecting network attacks. They are decision tree (C4.5), and neural network (FANN model). I trained and tested these models with data and measured the effectiveness in terms of detection accuracy, detection rate, and false alarm rate. This paper tries to find out which model is effective in intrusion detection. In the analysis, I used KDD Cup 99 data which is a benchmark data in intrusion detection research. I used an open source Weka software for C4.5 model, and C++ code available for FANN model.

Multimedia Watermark Detection Algorithm Based on Bayes Decision Theory (Bayes 판단 이론 기반 멀티미디어 워터마크 검출 알고리즘)

  • 권성근;이석환;김병주;권기구;하인성;권기룡;이건일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7A
    • /
    • pp.695-704
    • /
    • 2002
  • Watermark detection plays a crucial role in multimedia copyright protection and has traditionally been tackled using correlation-based algorithms. However, correlation-based detection is not actually the best choice, as it does not utilize the distributional characteristics of the image being marked. Accordingly, an efficient watermark detection scheme for DWT coefficients is proposed as optimal for non-additive schemes. Based on the statistical decision theory, the proposed method is derived according to Bayes decision theory, the Neyman-Pearson criterion, and the distribution of the DWT coefficients, thereby minimizing the missed detection probability subject to a given false alarm probability. The proposed method was tested in the context of robustness, and the results confirmed the superiority of the proposed technique over conventional correlation-based detection method.

Watermark Detection Algorithm Using Statistical Decision Theory (통계적 판단 이론을 이용한 워터마크 검출 알고리즘)

  • 권성근;김병주;이석환;권기구;권기용;이건일
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.39-49
    • /
    • 2003
  • Watermark detection has a crucial role in copyright protection of and authentication for multimedia and has classically been tackled by means of correlation-based algorithms. Nevertheless, when watermark embedding does not obey an additive rule, correlation-based detection is not the optimum choice. So a new detection algorithm is proposed which is optimum for non-additive watermark embedding. By relying on statistical decision theory, the proposed method is derived according to the Bayes decision theory, Neyman-Pearson criterion, and distribution of wavelet coefficients, thus permitting to minimize the missed detection probability subject to a given false detection probability. The superiority of the proposed method has been tested from a robustness perspective. The results confirm the superiority of the proposed technique over classical correlation- based method.

A Performance Analysis of Video Smoke Detection based on Back-Propagation Neural Network (오류 역전파 신경망 기반의 연기 검출 성능 분석)

  • Im, Jae-Yoo;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.26-31
    • /
    • 2014
  • In this paper, we present performance analysis of video smoke detection based on BPN-Network that is using multi-smoke feature, and Neural Network. Conventional smoke detection method consist of simple or mixed functions using color, temporal, spatial characteristics. However, most of all, they don't consider the early fire conditions. In this paper, we analysis the smoke color and motion characteristics, and revised distinguish the candidate smoke region. Smoke diffusion, transparency and shape features are used for detection stage. Then it apply the BPN-Network (Back-Propagation Neural Network). The simulation results showed 91.31% accuracy and 2.62% of false detection rate.

Accurate Pig Detection for Video Monitoring Environment (비디오 모니터링 환경에서 정확한 돼지 탐지)

  • Ahn, Hanse;Son, Seungwook;Yu, Seunghyun;Suh, Yooil;Son, Junhyung;Lee, Sejun;Chung, Yongwha;Park, Daihee
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.890-902
    • /
    • 2021
  • Although the object detection accuracy with still images has been significantly improved with the advance of deep learning techniques, the object detection problem with video data remains as a challenging problem due to the real-time requirement and accuracy drop with occlusion. In this research, we propose a method in pig detection for video monitoring environment. First, we determine a motion, from a video data obtained from a tilted-down-view camera, based on the average size of each pig at each location with the training data, and extract key frames based on the motion information. For each key frame, we then apply YOLO, which is known to have a superior trade-off between accuracy and execution speed among many deep learning-based object detectors, in order to get pig's bounding boxes. Finally, we merge the bounding boxes between consecutive key frames in order to reduce false positive and negative cases. Based on the experiment results with a video data set obtained from a pig farm, we confirmed that the pigs could be detected with an accuracy of 97% at a processing speed of 37fps.

The earth mover's distance and Bayesian linear discriminant analysis for epileptic seizure detection in scalp EEG

  • Yuan, Shasha;Liu, Jinxing;Shang, Junliang;Kong, Xiangzhen;Yuan, Qi;Ma, Zhen
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.373-382
    • /
    • 2018
  • Since epileptic seizure is unpredictable and paroxysmal, an automatic system for seizure detecting could be of great significance and assistance to patients and medical staff. In this paper, a novel method is proposed for multichannel patient-specific seizure detection applying the earth mover's distance (EMD) in scalp EEG. Firstly, the wavelet decomposition is executed to the original EEGs with five scales, the scale 3, 4 and 5 are selected and transformed into histograms and afterwards the distances between histograms in pairs are computed applying the earth mover's distance as effective features. Then, the EMD features are sent to the classifier based on the Bayesian linear discriminant analysis (BLDA) for classification, and an efficient postprocessing procedure is applied to improve the detection system precision, finally. To evaluate the performance of the proposed method, the CHB-MIT scalp EEG database with 958 h EEG recordings from 23 epileptic patients is used and a relatively satisfactory detection rate is achieved with the average sensitivity of 95.65% and false detection rate of 0.68/h. The good performance of this algorithm indicates the potential application for seizure monitoring in clinical practice.

A Study on Hierarchical Distributed Intrusion Detection for Secure Home Networks Service (안전한 홈네트워크 서비스를 위한 계층적 분산 침입탐지에 관한 연구)

  • Yu, Jae-Hak;Choi, Sung-Back;Yang, Sung-Hyun;Park, Dai-Hee;Chung, Yong-Wha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.1
    • /
    • pp.49-57
    • /
    • 2008
  • In this paper, we propose a novel hierarchical distributed intrusion detection system, named HNHDIDS(Home Network Hierarchical Distributed Intrusion Detection System), which is not only based on the structure of distributed intrusion detection system, but also fully consider the environment of secure home networks service. The proposed system is hierarchically composed of the one-class support vector machine(support vector data description) and local agents, in which it is designed for optimizing for the environment of secure home networks service. We support our findings with computer experiments and analysis.

Object Double Detection Method using YOLOv5 (YOLOv5를 이용한 객체 이중 탐지 방법)

  • Do, Gun-wo;Kim, Minyoung;Jang, Si-woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.54-57
    • /
    • 2022
  • Korea has a vulnerable environment from the risk of wildfires, which causes great damage every year. To prevent this, a lot of manpower is being used, but the effect is insufficient. If wildfires are detected and extinguished early through artificial intelligence technology, damage to property and people can be prevented. In this paper, we studied the object double detection method with the goal of minimizing the data collection and processing process that occurs in the process of creating an object detection model to minimize the damage of wildfires. In YOLOv5, the original image is primarily detected through a single model trained on a limited image, and the object detected in the original image is cropped through Crop. The possibility of improving the false positive object detection rate was confirmed through the object double detection method that re-detects the cropped image.

  • PDF

The Study on YARA Rules and Detection Tool for HWP Document-Type Malware (HWP 문서형 악성코드 탐지를 위한 YARA규칙 및 탐지도구에 관한 연구)

  • Joongjin Kook;Heechan Won;Sungwoo Kim;Dohee Kim;Junghoon Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.3
    • /
    • pp.108-114
    • /
    • 2024
  • This study details the development of YARA rules and a detection program specifically designed to identify malware in HWP documents, a common target in cyber-attacks within South Korea. By thoroughly analyzing the unique structural features of HWP files, we developed precise YARA rules that were subsequently integrated into a custom detection tool. The program was rigorously tested on a dataset of benign and malicious HWP documents, demonstrating high detection accuracy and a low false-positive rate. This research offers a robust and practical solution for enhancing cybersecurity in environments where HWP files are frequently used, contributing valuable tools for the targeted detection of document-based malware.

  • PDF

Robust Sign Recognition System at Subway Stations Using Verification Knowledge

  • Lee, Dongjin;Yoon, Hosub;Chung, Myung-Ae;Kim, Jaehong
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.696-703
    • /
    • 2014
  • In this paper, we present a walking guidance system for the visually impaired for use at subway stations. This system, which is based on environmental knowledge, automatically detects and recognizes both exit numbers and arrow signs from natural outdoor scenes. The visually impaired can, therefore, utilize the system to find their own way (for example, using exit numbers and the directions provided) through a subway station. The proposed walking guidance system consists mainly of three stages: (a) sign detection using the MCT-based AdaBoost technique, (b) sign recognition using support vector machines and hidden Markov models, and (c) three verification techniques to discriminate between signs and non-signs. The experimental results indicate that our sign recognition system has a high performance with a detection rate of 98%, a recognition rate of 99.5%, and a false-positive error rate of 0.152.