• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.028 seconds

GCNXSS: An Attack Detection Approach for Cross-Site Scripting Based on Graph Convolutional Networks

  • Pan, Hongyu;Fang, Yong;Huang, Cheng;Guo, Wenbo;Wan, Xuelin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4008-4023
    • /
    • 2022
  • Since machine learning was introduced into cross-site scripting (XSS) attack detection, many researchers have conducted related studies and achieved significant results, such as saving time and labor costs by not maintaining a rule database, which is required by traditional XSS attack detection methods. However, this topic came across some problems, such as poor generalization ability, significant false negative rate (FNR) and false positive rate (FPR). Moreover, the automatic clustering property of graph convolutional networks (GCN) has attracted the attention of researchers. In the field of natural language process (NLP), the results of graph embedding based on GCN are automatically clustered in space without any training, which means that text data can be classified just by the embedding process based on GCN. Previously, other methods required training with the help of labeled data after embedding to complete data classification. With the help of the GCN auto-clustering feature and labeled data, this research proposes an approach to detect XSS attacks (called GCNXSS) to mine the dependencies between the units that constitute an XSS payload. First, GCNXSS transforms a URL into a word homogeneous graph based on word co-occurrence relationships. Then, GCNXSS inputs the graph into the GCN model for graph embedding and gets the classification results. Experimental results show that GCNXSS achieved successful results with accuracy, precision, recall, F1-score, FNR, FPR, and predicted time scores of 99.97%, 99.75%, 99.97%, 99.86%, 0.03%, 0.03%, and 0.0461ms. Compared with existing methods, GCNXSS has a lower FNR and FPR with stronger generalization ability.

Evaluation of commercial immunochromatography test kits for diagnosing canine parvovirus

  • Lee-Sang Hyeon;Dong-Kun Yang;Eun-Ju Kim;Yu-Ri Park;Hye Jeong Lee;Bang-Hun Hyun
    • Korean Journal of Veterinary Research
    • /
    • v.63 no.2
    • /
    • pp.19.1-19.6
    • /
    • 2023
  • Rapid immunochromatography test (RICT) kits are commonly used for the diagnosis of canine parvovirus (CPV) because of their rapid turnaround time, simplicity, and ease of use. However, the potential for cross-reactivity and low sensitivity can yield false-positive or false-negative results. There are 4 genotypes of CPV. Therefore, evaluating the performance and reliability of RICT kits for CPV detection is essential to ensure accurate diagnosis for appropriate treatment. In this study, we evaluated the performance of commercial RICT kits in the diagnosis of all CPV genotypes. The cross-reactivity of 6 commercial RICT kits was evaluated using 8 dog-related viruses and 4 bacterial strains. The limit of detection (LOD) was measured for the 4 genotypes of CPV and feline panleukopenia virus. The tested kits showed no cross-reactivity with the 8 dog-related viruses or 4 bacteria. Most RICT kits showed strong positive results for CPV-2 variants (CPV-2a, CPV-2b, and CPV-2c). However, the 2 kits produced negative results for CPV-2 or CPV-2b at a titer of 105 FAID50/mL, which may result in inaccurate diagnoses. Therefore, some kits need to improve their LOD by increasing their binding efficiency to detect all CPV genotypes.

DBSCAN Clustering-Based Detection of Signaling Attack in 5G/LTE Networks (5G/LTE 네트워크에서의 DBSCAN 클러스터링 기반 시그널링 공격 탐지)

  • Yerin Kwon;Junbeom Hur
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.5
    • /
    • pp.1059-1071
    • /
    • 2024
  • The 5G mobile network provides various services to numerous devices and applications, unlike LTE which focuses on smartphones. Features of 5G, such as low latency and massive connectivity, increase the overhead of the control plane(CP, signaling part) and make it difficult to detect abnormal devices due to random traffic patterns. In this paper, we propose a DBSCAN clustering-based detection method to counter signaling attacks, which are a type of 'Denial of Service(DoS)' attack targeting mobile networks. DBSCAN helps to create clusters of various shapes and can address dynamic traffic because the algorithm needs not to depend on past traffic statistics. We also use a real-time traced dataset for experiments to assess usability in real-world scenarios. According to the experiments, our method achieves 99.32% of accuracy and 0.03% of false-positive rates, demonstrating superior performance compared to previous works.

Robust Spectrum Sensing for Blind Multiband Detection in Cognitive Radio Systems: A Gerschgorin Likelihood Approach

  • Qing, Haobo;Liu, Yuanan;Xie, Gang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1131-1145
    • /
    • 2013
  • Energy detection is a widely used method for spectrum sensing in cognitive radios due to its simplicity and accuracy. However, it is severely affected by the noise uncertainty. To solve this problem, a blind multiband spectrum sensing scheme which is robust to noise uncertainty is proposed in this paper. The proposed scheme performs spectrum sensing over the total frequency channels simultaneously rather than a single channel each time. To improve the detection performance, the proposal jointly utilizes the likelihood function combined with Gerschgorin radii of unitary transformed covariance matrix. Unlike the conventional sensing methods, our scheme does not need any prior knowledge of noise power or PU signals, and thus is suitable for blind spectrum sensing. In addition, no subjective decision threshold setting is required in our scheme, making it robust to noise uncertainty. Finally, numerical results based on the probability of detection and false alarm versus SNR or the number of samples are presented to validate the performance of the proposed scheme.

Use of laser fluorescence device 'DIAGNODent$^{(R)}$' for detecting caries (레이저 우식진단기기 'DIAGNODent$^{(R)}$'의 활용)

  • Lee, Byoung-Jin
    • The Journal of the Korean dental association
    • /
    • v.49 no.8
    • /
    • pp.461-471
    • /
    • 2011
  • The detection of carious lesions is a key point to apply appropriate preventive measures or operative treatment of dental caries. A laser fluorescence device DIAGNOdent$^{(R)}$ (KaVo, Biberach, Germany) has also been shown to be of additional clinical value in the detection of initial caries. This report focus on the DIAGNOdent$^{(R)}$ for caries detection. DIAGNOdent$^{(R)}$ irradiate visible red light at a wavelength of 655 nm to elicit near-infrared fluorescence from caries lesion. This device is known as a reproducible method for caries detection, with good sensitivity and specificity especially for caries detection on occlusal and accessible smooth surfaces. DIAGNOdent$^{(R)}$ tended to be more sensitive method of detecting occlusal dentinal caries, however, showed more false-positive diagnoses than the visual inspection. So Clinician should not use the device as a clinician's primary diagnostic method and it is recommended that the device should be used in the decision-making process in relation to the diagnosis of caries as a second opinion in cases of doubt after visual inspection. The trend of modern dentistry would be a preventive approach rather than invasive treatment of the disease. This is possible only with early detection and respective preventive measures, DIAGNOdent$^{(R)}$ can help the changes.

STEREO VISION-BASED FORWARD OBSTACLE DETECTION

  • Jung, H.G.;Lee, Y.H.;Kim, B.J.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.493-504
    • /
    • 2007
  • This paper proposes a stereo vision-based forward obstacle detection and distance measurement method. In general, stereo vision-based obstacle detection methods in automotive applications can be classified into two categories: IPM (Inverse Perspective Mapping)-based and disparity histogram-based. The existing disparity histogram-based method was developed for stop-and-go applications. The proposed method extends the scope of the disparity histogram-based method to highway applications by 1) replacing the fixed rectangular ROI (Region Of Interest) with the traveling lane-based ROI, and 2) replacing the peak detection with a constant threshold with peak detection using the threshold-line and peakness evaluation. In order to increase the true positive rate while decreasing the false positive rate, multiple candidate peaks were generated and then verified by the edge feature correlation method. By testing the proposed method with images captured on the highway, it was shown that the proposed method was able to overcome problems in previous implementations while being applied successfully to highway collision warning/avoidance conditions, In addition, comparisons with laser radar showed that vision sensors with a wider FOV (Field Of View) provided faster responses to cutting-in vehicles. Finally, we integrated the proposed method into a longitudinal collision avoidance system. Experimental results showed that activated braking by risk assessment using the state of the ego-vehicle and measuring the distance to upcoming obstacles could successfully prevent collisions.

Robust Process Fault Detection System Under Asynchronous Time Series Data Situation (비동기 설비 신호 상황에서의 강건한 공정 이상 감지 시스템 연구)

  • Ko, Jong-Myoung;Choi, Ja-Young;Kim, Chang-Ouk;Sun, Sang-Joon;Lee, Seung-Jun
    • IE interfaces
    • /
    • v.20 no.3
    • /
    • pp.288-297
    • /
    • 2007
  • Success of semiconductor/LCD industry depends on its yield and quality of product. For the purpose, FDC (Fault Detection and Classification) system is used to diagnose fault state in main manufacturing processes by monitoring time series data collected by equipment sensors which represent various conditions of the equipment. The data set is segmented at the start and end of each product lot processing by a trigger event module. However, in practice, segmented sensor data usually have the features of data asynchronization such as different start points, end points, and data lengths. Due to the asynchronization problem, false alarm (type I error) and missed alarm (type II error) occur frequently. In this paper, we propose a robust process fault detection system by integrating a process event detection method and a similarity measuring method based on dynamic time warping algorithm. An experiment shows that the proposed system is able to recognize abnormal condition correctly under the asynchronous data situation.

Highly Reliable Watermark Detection Algorithm using Statistical Decision Method in Wavelet Domain (웨이블릿 영역에서 통계적 판정법을 이용한 고신뢰 워터마크 검출 알고리즘)

  • 권성근;김병주;이석환;권기구;김영춘;권기룡;이건일
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.67-77
    • /
    • 2003
  • Watermark detection has a crucial role in copyright protection and authentication for multimedia Because be the correlation -based algorithm which has widely been used in the watermark detection doesn't utilize the distributional characteristics of cover image to be marked, its performance is not optimum. So a new detection algorithm is proposed which is optimum for multiplicative watermark embedding. By relying on statistical decision method, the proposed method is derived according to the Bayes decision theory. Neyman Pearson criterion, and distribution of wavelet coefficients, thus Permitting to minimize the missed detection probability subject to a given false detection probability The superiority of the proposed method has been tested from a robustness perspective. The results confirm the superiority of the proposed technique over classical correlation -based method.

  • PDF

Smoke Detection Method Using Local Binary Pattern Variance in RGB Contrast Imag (RGB Contrast 영상에서의 Local Binary Pattern Variance를 이용한 연기검출 방법)

  • Kim, Jung Han;Bae, Sung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1197-1204
    • /
    • 2015
  • Smoke detection plays an important role for the early detection of fire. In this paper, we suggest a newly developed method that generated LBPV(Local Binary Pattern Variance)s as special feature vectors from RGB contrast images can be applied to detect smoke using SVM(Support Vector Machine). The proposed method rearranges mean value of the block from each R, G, B channel and its intensity of the mean value. Additionally, it generates RGB contrast image which indicates each RGB channel’s contrast via smoke’s achromatic color. Uniform LBPV, Rotation-Invariance LBPV, Rotation-Invariance Uniform LBPV are applied to RGB Contrast images so that it could generate feature vector from the form of LBP. It helps to distinguish between smoke and non smoke area through SVM. Experimental results show that true positive detection rate is similar but false positive detection rate has been improved, although the proposed method reduced numbers of feature vector in half comparing with the existing method with LBP and LBPV.

Design and Implementation of a Real-Time Face Detection System (실시간 얼굴 검출 시스템 설계 및 구현)

  • Jung Sung-Tae;Lee Ho-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.8
    • /
    • pp.1057-1068
    • /
    • 2005
  • This paper proposes a real-time face detection system which detects multiple faces from low resolution video such as web-camera video. First, It finds face region candidates by using AdaBoost based object detection method which selects a small number of critical features from a larger set. Next, it generates reduced feature vector for each face region candidate by using principle component analysis. Finally, it classifies if the candidate is a face or non-face by using SVM(Support Vector Machine) based binary classification. According to experiment results, the proposed method achieves real-time face detection from low resolution video. Also, it reduces the false detection rate than existing methods by using PCA and SVM based face classification step.

  • PDF