• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.034 seconds

Cloud-Type Classification by Two-Layered Fuzzy Logic

  • Kim, Kwang Baek
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • Cloud detection and analysis from satellite images has been a topic of research in many atmospheric and environmental studies; however, it still is a challenging task for many reasons. In this paper, we propose a new method for cloud-type classification using fuzzy logic. Knowing that visible-light images of clouds contain thickness related information, while infrared images haves height-related information, we propose a two-layered fuzzy logic based on the input source to provide us with a relatively clear-cut threshold in classification. Traditional noise-removal methods that use reflection/release characteristics of infrared images often produce false positive cloud areas, such as fog thereby it negatively affecting the classification accuracy. In this study, we used the color information from source images to extract the region of interest while avoiding false positives. The structure of fuzzy inference was also changed, because we utilized three types of source images: visible-light, infrared, and near-infrared images. When a cloud appears in both the visible-light image and the infrared image, the fuzzy membership function has a different form. Therefore we designed two sets of fuzzy inference rules and related classification rules. In our experiment, the proposed method was verified to be efficient and more accurate than the previous fuzzy logic attempt that used infrared image features.

Rotation Invariant Face Detection with Boosted Random Ferns (Boosted Random Ferns를 이용한 회전 불변 얼굴 검출)

  • Kim, Hoo Hyun;Cho, Dong-Chan;Bae, Jong Yeop;Kim, Whoi-Yul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.52-55
    • /
    • 2013
  • 본 논문은 Boosted Random Ferns 기반의 회전 불변 얼굴 검출 방법을 제안한다. 기존 Random Ferns 의 경우 특징값을 추출할 때 임의로 선택한 두 픽셀의 밝기값 비교를 통하여 이진 특징값을 추출한다. 이 경우 해당 픽셀의 밝기값에 잡음이 포함되면 특징값이 부정확하게 추출되는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 임의로 두 블록을 선택하고 해당 블록내 밝기값의 평균을 비교하여 이진 특징값을 추출하였다. 또한 픽셀 위치를 임의로 선택하여 ferns 를 구성하였던 기존의 방법 대신 최고의 분류 성능을 가지는 fern 들을 이용하여 분류기를 구성하기 위해, AdaBoost 의 방법을 Random Ferns 에 맞게 변경하였다. Boosted Random Ferns 를 트리 구조의 cascade 노드에 방향과 각도에 따라 배치하여 연산 속도를 향상시키고 false-positive를 줄이는 효과를 보았다. CMU Rotated Face Database 를 사용하여 평가하였을 때, 기존 Random Ferns 는 false-positive 의 수가 57 개 일 때 66%의 검출률을 보인 반면, Boosted Random Ferns 는 false-positive 의 수가 45 개 일 때 88%의 검출률을 보였다.

  • PDF

Analysis of MX-TM CFAR Processors in Radar Detection (레이다 검파에서의 MX-TM CFAR 처리기들에 대한 성능 분석)

  • 김재곤;조규홍;김응태;이동윤;송익호;김형명
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.92-95
    • /
    • 1991
  • Constant false alarm rate(CFAR) processors are useful for detecting radar targets in background for which all parameters in the statistical distribution are not known and may be nonstationary. The well known "cell averging" (CA) CFAR processor is known to yield best performance in homogeneous case, but exhibits severe performance in the presence of an interfering target in the reference window or/and in the region of clutter edges. The "order statistics"(OS) CFAR processor is known to have a good performance above two nonhomogeneous cases. The modified OS-CFAR processor, known as "trimmed mean"(TM) CFAR processor performs somewhat better than the OS-CFAR processor by judiciously trimming the ordered samples. This paper proposes and analyzes the performance of a new CFAR processor called the "maximum trimmed mean"(MX-TM) CFAR processor combining the "greatest of"(GO) CFAR and TM-CFAR processors. The MAX operation is included to control false alarms at clutter edges. Our analyses show that the proposed CFAR processor has similar performance TM- and OS-CFAR processors in homogeneous case and in the precence of interfering targets, but can control the false rate in clutter edges. Simulation results are presented to demonstrate the qualitative effects of various CFAR processors in nonhomogeneous clutter environments.

Code Acquisition with Receive Diversity and Constant False Alarm Rate Schemes: 1. Homogeneous Fading Circumstance (수신기 다양성과 일정 오경보 확률 방법을 쓴 부호획득: 1. 균질 감쇄 환경)

  • Kwon Hyoung-Moon;Oh Jong-Ho;Song Iick-Ho;Lee Ju-Mi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.371-380
    • /
    • 2006
  • The performance characteristics of the cell averaging(CA), greatest of(GO), and smallest of(SO) constant false alarm rate(CFAR) processors in homogeneous environment are obtained and compared when receiving antenna diversity is employed in the pseudonoise code acquisition of direct-sequence code division multiple access (DS/CDMA) systems. From the simulation results, it is observed that the CA CFAR scheme has the best performance and the GO CFAR scheme has almost the same performance as the CA CFAR scheme in homogeneous environment. In Part 2 of this paper, the CA, GO, and SO CFAR processors for code acquisition in nonhomogeneous environment are addressed.

A Shadow Region Suppression Method using Intensity Projection and Converting Energy to Improve the Performance of Probabilistic Background Subtraction (확률기반 배경제거 기법의 향상을 위한 밝기 사영 및 변환에너지 기반 그림자 영역 제거 방법)

  • Hwang, Soon-Min;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The segmentation of moving object in video sequence is a core technique of intelligent image processing system such as video surveillance, traffic monitoring and human tracking. A typical method to segment a moving region from the background is the background subtraction. The steps of background subtraction involve calculating a reference image, subtracting new frame from reference image and then thresholding the subtracted result. One of famous background modeling is Gaussian mixture model (GMM). Even though the method is known efficient and exact, GMM suffers from a problem that includes false pixels in ROI (region of interest), specifically shadow pixels. These false pixels cause fail of the post-processing tasks such as tracking and object recognition. This paper presents a method for removing false pixels included in ROT. First, we subdivide a ROI by using shape characteristics of detected objects. Then, a method is proposed to classify pixels from using histogram characteristic and comparing difference of energy that converts the color value of pixel into grayscale value, in order to estimate whether the pixels belong to moving object area or shadow area. The method is applied to real video sequence and the performance is verified.

Design and development of enhanced criticality alarm system for nuclear applications

  • Srinivas Reddy, Padi;Kumar, R. Amudhu Ramesh;Mathews, M. Geo;Amarendra, G.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.690-697
    • /
    • 2018
  • Criticality alarm systems (CASs) are mandatory in nuclear plants for prompt alarm in the event of any criticality incident. False criticality alarms are not desirable as they create a panic environment for radiation workers. The present article describes the design enhancement of the CAS at each stage and provides maximum availability, preventing false criticality alarms. The failure mode and effect analysis are carried out on each element of a CAS. Based on the analysis, additional hardware circuits are developed for early fault detection. Two different methods are developed, one method for channel loop functionality test and another method for dose alarm test using electronic transient pulse. The design enhancement made for the external systems that are integrated with a CAS includes the power supply, criticality evacuation hooter circuit, radiation data acquisition system along with selection of different soft alarm set points, and centralized electronic test facility. The CAS incorporating all improvements are assembled, installed, tested, and validated along with rigorous surveillance procedures in a nuclear plant for a period of 18,000 h.

Automatic Detection of Pulmonary Embolism in Spiral CT Angiography (나선형 CT 혈관촬영의 폐색전증 자동 검출)

  • Han, Jae-Bok;Hong, Sung-Hoon;Kim, Soo-Hyung;Lee, Guee-Sang
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.703-706
    • /
    • 2004
  • 나선형 CT 혈관촬영에서 획득한 영상의 분석를 통해서 폐색전증이 의심되는 부위를 자동으로 검출하는 방법으로, 연구 대상은 20명의 환자를 대상으로 분석하였으며 CT 검사 후 방사선과 의사가 정상소견을 받은 환자 5명과 폐색전증이 있는 판독소견을 가진 15명을 대상으로 비교 분석하였다. CT 검사하는 동안에 조영제를 투입하면, 폐색전증이 발생한 부위는 조영제 양과 분포가 불균등하여 명암값이 낮게 검출된다. 검출방법으로는 전처리 작업으로 폐영역만을 분할하고, 분할된 폐영역에서 혈관을 찾기 위해 모폴로지기법를 적용하여 세선화(thinning) 작업을 진행한다. 다음 공정으로는 경계선을 찾아 local watershed를 적용하여 혈관을 검출하고, 검출된 혈관내에서 원형모델을 적용하여 모폴로지(morphology)을 통해 국소 부위의 미세한 농도변화를 인지하여 색전이 발생한 영역을 자동검출하였다. 본 논문의 자동검출시스템에서는 색전증이 있는 경우에 true positive의 발생빈도는 case 당 4.5개가 검출되었다. 정상인의 경우에도 혈류의 흐름, 혈류의 분기점, 노이즈로 인한 false positive의 빈도는 case 당 2.6개가 발생하여 전체적으로 false positive는 5.2개가 검출되었다. 본 논문은 false positive의 비율이 높게 검출되었지만 폐영역 CT 검사의 컴퓨터지원진단시스템(computer aided diagnosis)의 향후 연구과제에 방향을 제시할 수 있을 것이라 사료된다.

  • PDF

Distortion Removal and False Positive Filtering for Camera-based Object Position Estimation (카메라 기반 객체의 위치인식을 위한 왜곡제거 및 오검출 필터링 기법)

  • Sil Jin;Jimin Song;Jiho Choi;Yongsik Jin;Jae Jin Jeong;Sang Jun Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Robotic arms have been widely utilized in various labor-intensive industries such as manufacturing, agriculture, and food services, contributing to increasing productivity. In the development of industrial robotic arms, camera sensors have many advantages due to their cost-effectiveness and small sizes. However, estimating object positions is a challenging problem, and it critically affects to the robustness of object manipulation functions. This paper proposes a method for estimating the 3D positions of objects, and it is applied to a pick-and-place task. A deep learning model is utilized to detect 2D bounding boxes in the image plane, and the pinhole camera model is employed to compute the object positions. To improve the robustness of measuring the 3D positions of objects, we analyze the effect of lens distortion and introduce a false positive filtering process. Experiments were conducted on a real-world scenario for moving medicine bottles by using a camera-based manipulator. Experimental results demonstrated that the distortion removal and false positive filtering are effective to improve the position estimation precision and the manipulation success rate.

Rapid and Sensitive Detection of Hepatitis C Virus in Clinical Blood Samples Using Reverse Transcriptase Polymerase Spiral Reaction

  • Sun, Wenying;Du, Ying;Li, Xingku;Du, Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.459-468
    • /
    • 2020
  • This study established a new polymerase spiral reaction (PSR) that combines with reverse transcription reactions for HCV detection targeting 5'UTR gene. To avoid cross-contamination of aerosols, an isothermal amplification tube (IAT), as a separate containment control, was used to judge the result. After optimizing the RT-PSR reaction system, its effectiveness and specificity were tested against 15 different virus strains which included 8 that were HCV positive and 7 as non-HCV controls. The results showed that the RT-PSR assay effectively detected all 8 HCV strains, and no false positives were found among the 7 non-HCV strains. The detection limit of our RT-PSR assay is comparable to the real-time RT-PCR, but is more sensitive than the RT-LAMP. The established RT-PSR assay was further evaluated for detection of HCV in clinical blood samples, and the resulting 80.25% detection rate demonstrated better or similar effectiveness compared to the RT-LAMP (79.63%) and real-time RT-PCR (80.25%). Overall, the results showed that the RT-PSR assay offers high specificity and sensitivity for HCV detection with great potential for screening HCV in clinical blood samples.

Small Target Detection with Clutter Rejection using Stochastic Hypothesis Testing

  • Kang, Suk-Jong;Kim, Do-Jong;Ko, Jung-Ho;Bae, Hyeon-Deok
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1559-1565
    • /
    • 2007
  • The many target-detection methods that use forward-looking infrared (FUR) images can deal with large targets measuring $70{\times}40$ pixels, utilizing their shape features. However, detection small targets is difficult because they are more obscure and there are many target-like objects. Therefore, few studies have examined how to detect small targets consisting of fewer than $30{\times}10$ pixels. This paper presents a small target detection method using clutter rejection with stochastic hypothesis testing for FLIR imagery. The proposed algorithm consists of two stages; detection and clutter rejection. In the detection stage, the mean of the input FLIR image is first removed and then the image is segmented using Otsu's method. A closing operation is also applied during the detection stage in order to merge any single targets detected separately. Then, the residual of the clutters is eliminated using statistical hypothesis testing based on the t-test. Several FLIR images are used to prove the performance of the proposed algorithm. The experimental results show that the proposed algorithm accurately detects small targets (Jess than $30{\times}10$ pixels) with a low false alarm rate compared to the center-surround difference method using the receiver operating characteristics (ROC) curve.

  • PDF