• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.028 seconds

Combined burst synchronization/error detection systems maximizing bit slip correction ranges (최대 비트슬립 정정범위를 가지는 복합 버스트 동기/에러 검출 시스템)

  • 최양호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1477-1486
    • /
    • 1997
  • Conventioally the decoding methods and the design of coset codes for burst synchronization and error detection have been based on the concept that slips occuring to the right or to the left with respect to a reference timing are corrected. In this paper we newly approach to the design of coset codes relying on the condition that only a single code word can exists in an observation interval, which provides an extentended view on the conventional approach. A theorem concerning the condition is presented. A combined burst synchronization and error detection system with maximum slip correction capability have been devised based on the theorem and a detection method is falsely accepted in the presented of channel errors. The false acceptance probabilities of the system are derived and its performance is analyzed through computer computation using the derived results.

  • PDF

Implementation of Realtime Face Recognition System using Haar-Like Features and PCA in Mobile Environment (모바일 환경에서 Haar-Like Features와 PCA를 이용한 실시간 얼굴 인증 시스템)

  • Kim, Jung Chul;Heo, Bum Geun;Shin, Na Ra;Hong, Ki Cheon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.2
    • /
    • pp.199-207
    • /
    • 2010
  • Recently, large amount of information in IDS(Intrusion Detection System) can be un manageable and also be mixed with false prediction error. In this paper, we propose a data mining methodology for IDS, which contains uncertainty based on training process and post-processing analysis additionally. Our system is trained to classify the existing attack for misuse detection, to detect the new attack pattern for anomaly detection, and to define border patter between attack and normal pattern. In experimental results show that our approach improve the performance against existing attacks and new attacks, from 0.62 to 0.84 about 35%.

A New Formula to Predict the Exact Detection Probability of a Generalized Order Statistics CFAR Detector for a Correlated Rayleigh Target

  • Kim, Chang-Joo
    • ETRI Journal
    • /
    • v.16 no.2
    • /
    • pp.15-25
    • /
    • 1994
  • In this paper we present a new formula which can predict the exact detection probability of a generalized order statistics (GOS) constant false alarm rate (DFAR) detector for a partially correlated Rayleigh target model (0 < $ \rho$< 1) in a closed form, where $\rho$ is the correlation coefficient between returned pulses. By simply substituting a set of specific coefficient into the derived formula, one can obtain the detection probability of any kind of CFAR detector. Detectors may include the order statistics CFAR detector, the censored mean level detector, and the trimmed mean CFAR detector, but are not necessarily restricted to them. The numerical result for the first order Markov correlation model as applied to some of the detectors shows that as $\rho$ increases from zero to one, higher signal-to-noise ratio is required to achieve the same detection probability.

  • PDF

Algorithm for Detection of Fire Smoke in a Video Based on Wavelet Energy Slope Fitting

  • Zhang, Yi;Wang, Haifeng;Fan, Xin
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.557-571
    • /
    • 2020
  • The existing methods for detection of fire smoke in a video easily lead to misjudgment of cloud, fog and moving distractors, such as a moving person, a moving vehicle and other non-smoke moving objects. Therefore, an algorithm for detection of fire smoke in a video based on wavelet energy slope fitting is proposed in this paper. The change in wavelet energy of the moving target foreground is used as the basis, and a time window of 40 continuous frames is set to fit the wavelet energy slope of the suspected area in every 20 frames, thus establishing a wavelet-energy-based smoke judgment criterion. The experimental data show that the algorithm described in this paper not only can detect smoke more quickly and more accurately, but also can effectively avoid the distraction of cloud, fog and moving object and prevent false alarm.

Requirement Analysis and Optimal Design of an Operational Change Detection Software

  • Lee, Young-Ran;Bang, Ki-In;Shin, Dong-Seok;Jeong, Soo;Kim, Kyung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 2004
  • This paper describes what an operational change detection tool requires and the software which was designed and developed according to the requirements. The top requirement for the application of the software to operational change detection was identified: minimization of false detections, missing detections and operational cost. In order to meet such a requirement, the software was designed with the concept that the ultimate decision and isolation of changes must be performed manually by visual interpretation and all automatic algorithms and/or visualization techniques must be defined as support functions. In addition, the modular structure of the proposed software enables the addition of a new support function with the minimum development cost and minimum change of the operational environment.

Proposal of Image Detection Algorithm to Implement Hand Gestures

  • Woo, Eun-Ju;Moon, Yu-Sung;Choi, Ung-Se;Kim, Jung-Won
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1222-1225
    • /
    • 2018
  • This paper proposes an image detection algorithm to implement gesture. By using a camera sensor, the performance of the extracted image algorithm based on the gesture pattern was verified through experiments. In addition, through the experiments, we confirmed the proposed method's possibility of the implementation. For efficient image detection, we applied a segmentation technique based on image transition which divides into small units. To improve gesture recognition, the proposed method not only has high recognition rate and low false acceptance rate in real gesture environment, but also designed an algorithm that efficiently finds optimal thresholds that can be applied.

A novel window strategy for concept drift detection in seasonal time series (계절성 시계열 자료의 concept drift 탐지를 위한 새로운 창 전략)

  • Do Woon Lee;Sumin Bae;Kangsub Kim;Soonhong An
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.377-379
    • /
    • 2023
  • Concept drift detection on data stream is the major issue to maintain the performance of the machine learning model. Since the online stream is to be a function of time, the classical statistic methods are hard to apply. In particular case of seasonal time series, a novel window strategy with Fourier analysis however, gives a chance to adapt the classical methods on the series. We explore the KS-test for an adaptation of the periodic time series and show that this strategy handles a complicate time series as an ordinary tabular dataset. We verify that the detection with the strategy takes the second place in time delay and shows the best performance in false alarm rate and detection accuracy comparing to that of arbitrary window sizes.

Anomaly-based Alzheimer's disease detection using entropy-based probability Positron Emission Tomography images

  • Husnu Baris Baydargil;Jangsik Park;Ibrahim Furkan Ince
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.513-525
    • /
    • 2024
  • Deep neural networks trained on labeled medical data face major challenges owing to the economic costs of data acquisition through expensive medical imaging devices, expert labor for data annotation, and large datasets to achieve optimal model performance. The heterogeneity of diseases, such as Alzheimer's disease, further complicates deep learning because the test cases may substantially differ from the training data, possibly increasing the rate of false positives. We propose a reconstruction-based self-supervised anomaly detection model to overcome these challenges. It has a dual-subnetwork encoder that enhances feature encoding augmented by skip connections to the decoder for improving the gradient flow. The novel encoder captures local and global features to improve image reconstruction. In addition, we introduce an entropy-based image conversion method. Extensive evaluations show that the proposed model outperforms benchmark models in anomaly detection and classification using an encoder. The supervised and unsupervised models show improved performances when trained with data preprocessed using the proposed image conversion method.

Anomaly-Based Network Intrusion Detection: An Approach Using Ensemble-Based Machine Learning Algorithm

  • Kashif Gul Chachar;Syed Nadeem Ahsan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.107-118
    • /
    • 2024
  • With the seamless growth of the technology, network usage requirements are expanding day by day. The majority of electronic devices are capable of communication, which strongly requires a secure and reliable network. Network-based intrusion detection systems (NIDS) is a new method for preventing and alerting computers and networks from attacks. Machine Learning is an emerging field that provides a variety of ways to implement effective network intrusion detection systems (NIDS). Bagging and Boosting are two ensemble ML techniques, renowned for better performance in the learning and classification process. In this paper, the study provides a detailed literature review of the past work done and proposed a novel ensemble approach to develop a NIDS system based on the voting method using bagging and boosting ensemble techniques. The test results demonstrate that the ensemble of bagging and boosting through voting exhibits the highest classification accuracy of 99.98% and a minimum false positive rate (FPR) on both datasets. Although the model building time is average which can be a tradeoff by processor speed.

Attention Based Collaborative Source-Side DDoS Attack Detection (어텐션 기반 협업형 소스측 분산 서비스 거부 공격 탐지)

  • Hwisoo Kim;Songheon Jeong;Kyungbaek Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.157-165
    • /
    • 2024
  • The evolution of the Distributed Denial of Service Attack(DDoS Attack) method has increased the difficulty in the detection process. One of the solutions to overcome the problems caused by the limitations of the existing victim-side detection method was the source-side detection technique. However, there was a problem of performance degradation due to network traffic irregularities. In order to solve this problem, research has been conducted to detect attacks using a collaborative network between several nodes based on artificial intelligence. Existing methods have shown limitations, especially in nonlinear traffic environments with high Burstness and jitter. To overcome this problem, this paper presents a collaborative source-side DDoS attack detection technique introduced with an attention mechanism. The proposed method aggregates detection results from multiple sources and assigns weights to each region, and through this, it is possible to effectively detect overall attacks and attacks in specific few areas. In particular, it shows a high detection rate with a low false positive of about 6% and a high detection rate of up to 4.3% in a nonlinear traffic dataset, and it can also confirm improvement in attack detection problems in a small number of regions compared to methods that showed limitations in the existing nonlinear traffic environment.