• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.025 seconds

Accident detection algorithm using features associated with risk factors and acceleration data from stunt performers

  • Jeong, Mingi;Lee, Sangyeoun;Lee, Kang Bok
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.654-671
    • /
    • 2022
  • Accidental falls frequently occur during activities of daily living. Although many studies have proposed various accident detection methods, no high-performance accident detection system is available. In this study, we propose a method for integrating data and accident detection algorithms presented in existing studies, collect new data (from two stunt performers and 15 people over age 60) using a developed wearable device, demonstrate new features and related accident detection algorithms, and analyze the performance of the proposed method against existing methods. Comparative analysis results show that the newly defined features extracted reflect more important risk factors than those used in existing studies. Further, although the traditional algorithms applied to integrated data achieved an accuracy (AC) of 79.5% and a false positive rate (FPR) of 19.4%, the proposed accident detection algorithms achieved 97.8% AC and 2.9% FPR. The high AC and low FPR for accidental falls indicate that the proposed method exhibits a considerable advancement toward developing a commercial accident detection system.

The Study of CFAR(Constant False Alarm Rate) process for a helicopter mounted millimeter wave radar system

  • Kim In Kyu;Moon Sang Man;Kim Hyoun Kyoung;Lee Sang Jong;Kim Tae Sik;Lee Hae Chang
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.890-895
    • /
    • 2004
  • This paper describes constant alarm rates process of millimeter wave radar that exits on non-stationary target detection schemes in the ground clutter conditions. The comparison of various CFAR processes such as CA(Cell-Average)-CFAR, GO(Greatest Of)/SO(Smallest Of)-CFAR and OS(Order Statistics)-CFAR performance are applied. Using matlab software, we show the performance and loss between detection probability and signal to noise ratio. When rang bins increase, this results show the OS-CFAR process performance is better than any others and satisfies the optimal detection probability without loss of detection in the homogeneous clutter.

  • PDF

Deep-Learning Approach for Text Detection Using Fully Convolutional Networks

  • Tung, Trieu Son;Lee, Gueesang
    • International Journal of Contents
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Text, as one of the most influential inventions of humanity, has played an important role in human life since ancient times. The rich and precise information embodied in text is very useful in a wide range of vision-based applications such as the text data extracted from images that can provide information for automatic annotation, indexing, language translation, and the assistance systems for impaired persons. Therefore, natural-scene text detection with active research topics regarding computer vision and document analysis is very important. Previous methods have poor performances due to numerous false-positive and true-negative regions. In this paper, a fully-convolutional-network (FCN)-based method that uses supervised architecture is used to localize textual regions. The model was trained directly using images wherein pixel values were used as inputs and binary ground truth was used as label. The method was evaluated using ICDAR-2013 dataset and proved to be comparable to other feature-based methods. It could expedite research on text detection using deep-learning based approach in the future.

Pupil Detection using PCA and Hough Transform

  • Jang, Kyung-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.2
    • /
    • pp.21-27
    • /
    • 2017
  • In this paper, we propose a pupil detection method using PCA(principal component analysis) and Hough transform. To reduce error to detect eyebrows as pupil, eyebrows are detected using projection function in eye region and eye region is set to not include the eyebrows. In the eye region, pupil candidates are detected using rank order filter. False candidates are removed by using symmetry. The pupil candidates are grouped into pairs based on geometric constraints. A similarity measure is obtained for two eye of each pair using PCA and hough transform, we select a pair with the smallest similarity measure as final two pupils. The experiments have been performed for 1000 images of the BioID face database. The results show that it achieves the higher detection rate than existing method.

Vision Sensing for the Ego-Lane Detection of a Vehicle (자동차의 자기 주행차선 검출을 위한 시각 센싱)

  • Kim, Dong-Uk;Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.137-141
    • /
    • 2018
  • Detecting the ego-lane of a vehicle (the lane on which the vehicle is currently running) is one of the basic techniques for a smart car. Vision sensing is a widely-used method for the ego-lane detection. Existing studies usually find road lane lines by detecting edge pixels in the image from a vehicle camera, and then connecting the edge pixels using Hough Transform. However, this approach takes rather long processing time, and too many straight lines are often detected resulting in false detections in various road conditions. In this paper, we find the lane lines by scanning only a limited number of horizontal lines within a small image region of interest. The horizontal image line scan replaces the edge detection process of existing methods. Automatic thresholding and spatiotemporal filtering procedures are also proposed in order to make our method reliable. In the experiments using real road images of different conditions, the proposed method resulted in high success rate.

Waveform Detection Algorithm based on the Search of Distinctive Line-Segments (검색에 기초한 파형 검출 알고리듬)

  • 박승훈;장태규
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.265-272
    • /
    • 1993
  • We present a new waveform detection method, based on the search of distinctive line-segments. The method is based on the basic assumption that the waveform morphology of biological signals is readily characterized by a sequence of the distinctive line-segments and their structural features. In this method, the distinctive line-segments are first searched for, and a structural feature analysis is performed an the distinctive line-segments found. Experiments of detecting epileptic spikes were carried out to evaluate the detection per formance of the method. Two subjects were used for training and tuning the algorithm and four subjects for testing the method. The results were obtained on two different performance indices, detection ratio and the number of false detections per minute.

  • PDF

A Study on Needle Detection by using RGB Color Information (RGB 컬러정보를 이용한 침 인식에 관한 연구)

  • Han, Soowhan;Jang, Kyung-Shik
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1216-1224
    • /
    • 2015
  • In this paper, a detection algorithm for the removal of needle in oriental clinic is presented. First, in the proposed method, the candidate areas of each needle penetrated are selected by using the RGB color information of needle head, and the false candidates are removed by considering their area size. Next, two main edges of the needle are extracted through using the edges of selected candidate areas and their radon transformation. The final verification of penetrated needle is accomplished by using the morphological analysis of these two edge lines. In the experiments, the detection rate of proposed method reaches to 99% for the 36 images containing 294 needles.

An Online Response System for Anomaly Traffic by Incremental Mining with Genetic Optimization

  • Su, Ming-Yang;Yeh, Sheng-Cheng
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.375-381
    • /
    • 2010
  • A flooding attack, such as DoS or Worm, can be easily created or even downloaded from the Internet, thus, it is one of the main threats to servers on the Internet. This paper presents an online real-time network response system, which can determine whether a LAN is suffering from a flooding attack within a very short time unit. The detection engine of the system is based on the incremental mining of fuzzy association rules from network packets, in which membership functions of fuzzy variables are optimized by a genetic algorithm. The incremental mining approach makes the system suitable for detecting, and thus, responding to an attack in real-time. This system is evaluated by 47 flooding attacks, only one of which is missed, with no false positives occurring. The proposed online system belongs to anomaly detection, not misuse detection. Moreover, a mechanism for dynamic firewall updating is embedded in the proposed system for the function of eliminating suspicious connections when necessary.

Fault Feature Clarification in the Residual for Fault Detection and Diagnosis of Control Systems

  • Lee, Jonghyo;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.96.3-96
    • /
    • 2002
  • A scheme of clarifying fault feature in the residual is given for model-based fault detection and diagnosis of control systems. It is based on the residual generation using a robust filter and the noise suppresion in test statistics of the residual by multi-scale discrete wavelet transform. By clarifying the fault feature in the residual, the difficulties of existing model based approaches via adopting a threshold can be overcomed and it has advantage of taking the false alarm and missed detection into acount at the same time, which can make the fault detection and diagnosis easy and correct. To show the effectiveness of our approach, the simulation results are illustrated for a linear syste...

  • PDF

Using multi-type sensor measurements for damage detection of shear connectors in composite bridges under moving loads

  • Fan, Xingyu;Li, Jun;Hao, Hong;Chen, Zhiwei
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.521-527
    • /
    • 2017
  • This paper proposes using the multi-type sensor vibration measurements, such as from a relative displacement sensors and a traditional accelerometer for the damage detection of shear connectors in composite bridge under moving loads. Hilbert-Huang Transform (HHT) spectra of these responses will be fused with a data fusion approach i.e., Dempster-Shafer method, to detect the damage of shear connectors. Experimental studies on a composite bridge model in the laboratory are conducted to demonstrate the effectiveness and performance of using the proposed approach in detecting the damage of shear connectors in composite bridges. Both undamaged and damaged scenarios are considered. The detection results with the data fusion of multi-type sensor measurements show a more reliable and robust performance and accuracy, avoiding the false identifications.