• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.028 seconds

Demonstration of Optimizing the CFAR Threshold for Development of GMTI System (GMTI 시스템 개발을 위한 CFAR 임계치 최적화)

  • Kim, So-Yeon;Yoon, Sang-Ho;Shin, Hyun-Ik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.141-146
    • /
    • 2018
  • The Ground Moving Target Indication(GMTI) technique can detect the moving targets on land using its Doppler returns. Also, the GMTI system can work in night regardless of the weather condition because it is an active sensor that uses the electromagnetic waves as its source. In order to develop the GMTI system, Constant False Alarm Rate(CFAR) threshold optimization is important because the main performances like detection probability, false alarm rate and Minimum Detectable Velocity(MDV) are related deeply with CFAR threshold. These key variables are used to calculate CFAR threshold and then trade-off between the variables is performed. In this paper, CFAR threshold optimization procedures are introduced, and the optimization results are demonstrated.

An Improved Secure Semi-fragile Watermarking Based on LBP and Arnold Transform

  • Zhang, Heng;Wang, Chengyou;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1382-1396
    • /
    • 2017
  • In this paper, we analyze a recently proposed semi-fragile watermarking scheme based on local binary pattern (LBP) operators, and note that it has a fundamental flaw in the design. In this work, a binary watermark is embedded into image blocks by modifying the neighborhood pixels according to the LBP pattern. However, different image blocks might have the same LBP pattern, which can lead to false detection in watermark extraction process. In other words, one can modify the host image intentionally without affecting its watermark message. In addition, there is no encryption process before watermark embedding, which brings another potential security problem. To illustrate its weakness, two special copy-paste attacks are proposed in this paper, and several experiments are conducted to prove the effectiveness of these attacks. To solve these problems, an improved semi-fragile watermarking based on LBP operators is presented. In watermark embedding process, the central pixel value of each block is taken into account and Arnold transform is adopted to guarantee the security of watermark. Experimental results show that the improved watermarking scheme can overcome the above defects and locate the tampered region effectively.

A Study on The Hybrid Acquisition Performance of MC DS-CDMA Over Multipath Fading Channel (다중경로 환경에서 MC DS-CDMA시스템의 직.병렬 혼합 동기 획득에 관한 연구)

  • Kim, Won-Sbu;Kim, Kyung-Won;Park, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1968-1976
    • /
    • 2007
  • This paper proposes a hybrid pseudo-noise (PN) code acquisition scheme for Multicarrier Direct Sequence - Code Division Multiple Access (MC DS-CDMA) mobile communication systems on the code acquisition performance for Nakagami-m fading channel. The hybrid acquisition scheme combines parallel search with serial search to cover the whole uncertainty region of the input code phase. It has a much simpler acquisition hardware structure than the total parallel acquisition and can achieve the mean acquisition time (MAT) slightly inferior to that of the total parallel acquisition. The closed-form expressions of the detection and false-alarm probabilities are derived.

Conditional Signal-Acquisition Parameter Selection for Automated Satellite Laser Ranging System

  • Kim, Simon;Lim, Hyung-Chul;Kim, Byoungsoo
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.97-103
    • /
    • 2019
  • An automated signal-acquisition method for the NASA's space geodesy satellite laser ranging (SGSLR) system is described as a selection of two system parameters with specified probabilities. These parameters are the correlation parameter: the minimum received pulse number for a signal-acquisition and the frame time: the minimum time for the correlation parameter. The probabilities specified are the signal-detection and false-acquisition probabilities to distinguish signals from background noise. The steps of parameter selection are finding the minimum set of values by fitting a curve and performing a graph-domain approximation. However, this selection method is inefficient, not only because of repetition of the entire process if any performance values change, such as the signal and noise count rate, but also because this method is dependent upon system specifications and environmental conditions. Moreover, computation is complicated and graph-domain approximation can introduce inaccuracy. In this study, a new method is proposed to select the parameters via a conditional equation derived from characteristics of the signal-detection and false-acquisition probabilities. The results show that this method yields better efficiency and robustness against changing performance values with simplicity and accuracy and can be easily applied to other satellite laser ranging (SLR) systems.

Feature Analysis for Detecting Mobile Application Review Generated by AI-Based Language Model

  • Lee, Seung-Cheol;Jang, Yonghun;Park, Chang-Hyeon;Seo, Yeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.650-664
    • /
    • 2022
  • Mobile applications can be easily downloaded and installed via markets. However, malware and malicious applications containing unwanted advertisements exist in these application markets. Therefore, smartphone users install applications with reference to the application review to avoid such malicious applications. An application review typically comprises contents for evaluation; however, a false review with a specific purpose can be included. Such false reviews are known as fake reviews, and they can be generated using artificial intelligence (AI)-based text-generating models. Recently, AI-based text-generating models have been developed rapidly and demonstrate high-quality generated texts. Herein, we analyze the features of fake reviews generated from Generative Pre-Training-2 (GPT-2), an AI-based text-generating model and create a model to detect those fake reviews. First, we collect a real human-written application review from Kaggle. Subsequently, we identify features of the fake review using natural language processing and statistical analysis. Next, we generate fake review detection models using five types of machine-learning models trained using identified features. In terms of the performances of the fake review detection models, we achieved average F1-scores of 0.738, 0.723, and 0.730 for the fake review, real review, and overall classifications, respectively.

Improved Ship and Wake Detection Using Sentinel-2A Satellite Data (Sentinel-2A 위성자료를 활용한 선박 및 후류 탐지 개선)

  • Jeon, Uujin;Seo, Minji;Seong, Noh-hun;Choi, Sungwon;Sim, Suyoung;Byeon, Yugyeong;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.559-566
    • /
    • 2021
  • It is necessary to quickly detect and respond to ship accidents that occur continuously due to the influence of the recently increased maritime traffic. For this purpose, ship detection research is being actively conducted based on satellite images that can be monitored in real time over a wide area. However, there is a possibility that the wake may be falsely detected as a ship because the wake removal is not performed in previous studies that performed ship detection using spectral characteristics. Therefore, in this study, ship detection was performed using SDI (Ship Detection Index) based on the Sentinel-2A satellite image, and the wake was removed by utilizing the difference in the spectral characteristics of the ship and the wake. Probability of detection (POD) and false alarm rate (FAR) indices were used to verify the accuracy of the ship detection algorithm in this study. As a result of the verification, POD was similar and FAR was improved by 6.4% compared to the result of applying only SDI.

Diagnostic Accuracy of Cervicovaginal Cytology in the Detection of Squamous Epithelial Lesions of the Uterine Cervix; Cytologic/Histologic Correlation of 481 Cases (자궁경부 편평상피병변에서 자궁경부질도말 세포검사의 진단정확도 : 481예의 세포-조직 상관관계)

  • Jin, So-Young;Park, Sang-Mo;Kim, Mee-Sun;Jeen, Yoon-Mi;Kim, Dong-Won;Lee, Dong-Wha
    • The Korean Journal of Cytopathology
    • /
    • v.19 no.2
    • /
    • pp.111-118
    • /
    • 2008
  • Background : Cervicovaginal cytology is a screening test of uterine cervical cancer. The sensitivity of cervicovaginal cytology is less than 50%, but studies of cytologic/histologic correlation are limited. We analyzed the diagnostic accuracy of cervicovaginal cytology in the detection of the squamous epithelial lesions of the uterine cervix and investigate the cause of diagnostic discordance. Materials and Methods : We collected a total of 481 sets of cervicovaginal cytology and biopsies over 5 years. The cytologic diagnoses were categorized based on The Bethesda System and the histologic diagnoses were classified as negative, flat condyloma, cervical intraepithelial neoplasia (CIN) I, CIN II, CIN III, or squamous cell carcinoma. Cytohistologic discrepancies were reviewed. Results: The concordance rate between the cytological and the histological diagnosis was 79.0%. The sensitivity and specificity of cervicovaginal cytology were 80.6% and 92.6%, respectively. Its positive predictive value and negative predictive value were 93.7% and 77.7%, respectively. The false negative rate was 19.4%. Among 54 false negative cytology cases, they were confirmed by histology as 50 flat condylomas, 2 CIN I, 1 CIN III, and 1 squamous cell carcinoma. The causes of false negative cytology were sampling errors in 75.6% and interpretation errors in 24.4%. The false positive rate was 7.4%. Among 15 false positive cytology cases, they were confirmed by histology as 12 atypical squamous cells of undetermined significance (ASCUS) and 3 low grade squamous intraepithelial lesions (LSIL). The cause of error was interpretation error in all cases. The overall diagnostic accuracy of cervicovaginal cytology was 85.7%. Conclusions : Cervicovaginal cytology shows high overall diagnostic accuracy and is a useful primary screen of uterine cervical cancer.

Design and Implementation of a Web Application Firewall with Multi-layered Web Filter (다중 계층 웹 필터를 사용하는 웹 애플리케이션 방화벽의 설계 및 구현)

  • Jang, Sung-Min;Won, Yoo-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.157-167
    • /
    • 2009
  • Recently, the leakage of confidential information and personal information is taking place on the Internet more frequently than ever before. Most of such online security incidents are caused by attacks on vulnerabilities in web applications developed carelessly. It is impossible to detect an attack on a web application with existing firewalls and intrusion detection systems. Besides, the signature-based detection has a limited capability in detecting new threats. Therefore, many researches concerning the method to detect attacks on web applications are employing anomaly-based detection methods that use the web traffic analysis. Much research about anomaly-based detection through the normal web traffic analysis focus on three problems - the method to accurately analyze given web traffic, system performance needed for inspecting application payload of the packet required to detect attack on application layer and the maintenance and costs of lots of network security devices newly installed. The UTM(Unified Threat Management) system, a suggested solution for the problem, had a goal of resolving all of security problems at a time, but is not being widely used due to its low efficiency and high costs. Besides, the web filter that performs one of the functions of the UTM system, can not adequately detect a variety of recent sophisticated attacks on web applications. In order to resolve such problems, studies are being carried out on the web application firewall to introduce a new network security system. As such studies focus on speeding up packet processing by depending on high-priced hardware, the costs to deploy a web application firewall are rising. In addition, the current anomaly-based detection technologies that do not take into account the characteristics of the web application is causing lots of false positives and false negatives. In order to reduce false positives and false negatives, this study suggested a realtime anomaly detection method based on the analysis of the length of parameter value contained in the web client's request. In addition, it designed and suggested a WAF(Web Application Firewall) that can be applied to a low-priced system or legacy system to process application data without the help of an exclusive hardware. Furthermore, it suggested a method to resolve sluggish performance attributed to copying packets into application area for application data processing, Consequently, this study provide to deploy an effective web application firewall at a low cost at the moment when the deployment of an additional security system was considered burdened due to lots of network security systems currently used.

A Multiple Instance Learning Problem Approach Model to Anomaly Network Intrusion Detection

  • Weon, Ill-Young;Song, Doo-Heon;Ko, Sung-Bum;Lee, Chang-Hoon
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.14-21
    • /
    • 2005
  • Even though mainly statistical methods have been used in anomaly network intrusion detection, to detect various attack types, machine learning based anomaly detection was introduced. Machine learning based anomaly detection started from research applying traditional learning algorithms of artificial intelligence to intrusion detection. However, detection rates of these methods are not satisfactory. Especially, high false positive and repeated alarms about the same attack are problems. The main reason for this is that one packet is used as a basic learning unit. Most attacks consist of more than one packet. In addition, an attack does not lead to a consecutive packet stream. Therefore, with grouping of related packets, a new approach of group-based learning and detection is needed. This type of approach is similar to that of multiple-instance problems in the artificial intelligence community, which cannot clearly classify one instance, but classification of a group is possible. We suggest group generation algorithm grouping related packets, and a learning algorithm based on a unit of such group. To verify the usefulness of the suggested algorithm, 1998 DARPA data was used and the results show that our approach is quite useful.

퍼지이론을 이용한 유고감지 알고리즘

  • 이시복
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.12a
    • /
    • pp.77-107
    • /
    • 1995
  • This paper documents the development of a fuzzy logic based incident detection model for urban diamond interchanges. Research in incident detection for intersections and arterials is at a very initial stage. Existing algorithms are still far from being robust in dealing with the difficulties related with data availability and the multi-dimensional nature of the incident detection problem. The purpose of this study is to develop a new real-time incident detection model for urban diamond interchanges. The development of the algorithm is based on fuzzy logic. The incident detection model developed through this research is capable of detecting lane¬blocking incidents when their effects are manifested by certain patterns of deterioration in traffic conditions and, thereby, adjustments in signal control strategies are required. The model overcomes the boundary condition problem inherent in conventional threshold-based concepts. The model captures system-wide incident effects utilizing multiple measures for more accurate and reliable detection, and serves as a component module of a real-time traffic adaptive diamond interchange control system. The model is designed to be readily scalable and expandable for larger systems of arterial streets. The prototype incident detection model was applied to an actual diamond interchange to investigate its performance. A simulation study was performed to evaluate the model's performance in terms of detection rate, false alarm rate, and mean time to detect. The model's performance was encouraging, and the fuzzy logic based approach to incident detection is promising.

  • PDF