• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.026 seconds

Analysis of Unwanted Fire Alarm Signal Pattern of Smoke / Temperature Detector in the IoT-Based Fire Detection System (IoT 기반 화재탐지시스템의 연기 및 온도감지기 비화재보 신호 패턴 분석)

  • Park, Seunghwan;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.69-75
    • /
    • 2022
  • Fire-alarm systems are safety equipment that facilitate rapid evacuation and early suppression in case of fire. It is highly desirable that fire-alarm systems have low false-alarm rates and are thus reliable. Until now, researchers have attempted to improve detector performance by applying new technologies such as IoT. To this end, IoT-based fire-detection systems have been developed. However, due to scarcity of large-scale operational data, researchers have barely studied malfunctioning in fire-alarm systems or attempted to reduce false-alarm rates in these systems. In this study, we analyzed false-alarm rates of smoke/temperature detectors and unwanted fire-alarm signal patterns at K institution, where Korea's largest IoT-based fire-detection system operates. After analyzing the fire alarm occurrences at the institution for five years, we inferred that the IoT-based fire-detection system showed lower false-alarm rates compared to the automatic fire-detection equipment. We analyzed the detection pattern by dividing it into two parts: normal operation and unwanted fire alarms. When a specific signal pattern was filtered out, the false-alarm rate was reduced to 66.9% in the smoke detector and to 46.9% in the temperature detector.

Performance Analysis of DoS/DDoS Attack Detection Algorithms using Different False Alarm Rates (False Alarm Rate 변화에 따른 DoS/DDoS 탐지 알고리즘의 성능 분석)

  • Jang, Beom-Soo;Lee, Joo-Young;Jung, Jae-Il
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.139-149
    • /
    • 2010
  • Internet was designed for network scalability and best-effort service which makes all hosts connected to Internet to be vulnerable against attack. Many papers have been proposed about attack detection algorithms against the attack using IP spoofing and DoS/DDoS attack. Purpose of DoS/DDoS attack is achieved in short period after the attack begins. Therefore, DoS/DDoS attack should be detected as soon as possible. Attack detection algorithms using false alarm rates consist of the false negative rate and the false positive rate. Moreover, they are important metrics to evaluate the attack detections. In this paper, we analyze the performance of the attack detection algorithms using the impact of false negative rate and false positive rate variation to the normal traffic and the attack traffic by simulations. As the result of this, we find that the number of passed attack packets is in the proportion to the false negative rate and the number of passed normal packets is in the inverse proportion to the false positive rate. We also analyze the limits of attack detection due to the relation between the false negative rate and the false positive rate. Finally, we propose a solution to minimize the limits of attack detection algorithms by defining the network state using the ratio between the number of packets classified as attack packets and the number of packets classified as normal packets. We find the performance of attack detection algorithm is improved by passing the packets classified as attacks.

An Aggregate Detection Method for Improved Sensitivity using Correlation of Heterogeneous Intrusion Detection Sensors (이종의 침입탐지센서 관련성을 이용한 통합탐지의 민감도 향상 방법)

  • 김용민;김민수;김홍근;노봉남
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.4
    • /
    • pp.29-39
    • /
    • 2002
  • In general, the intrusion detection method of anomalous behaviors has high false alarm rate which contains false-positive and false-negative. To increase the sensitivity of intrusion detection, we propose a method of aggregate detection to reduce false alarm rate by using correlation between misuse activity detection sensors and anomalous ones. For each normal behavior and anomalous one, we produce the reflection rate between the result from one sensor and another in off-line. Then, we apply this rate to the result of real-time detection to reduce false alarm rate.

Thermal Imaging Fire Detection Algorithm with Minimal False Detection

  • Jeong, Soo-Young;Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2156-2170
    • /
    • 2020
  • This paper presents a fire detection algorithm with a minimal false detection rate, intended for a thermal imaging surveillance environment, whose properties vary depending on temporal conditions of day or night and environmental changes. This algorithm was designed to minimize the false detection alarm rate while ensuring a high detection rate, as required in fire detection applications. It was necessary to reduce false fire detections due to non-flame elements occurring when existing fixed threshold-based fire detection methods were applied. To this end, adaptive flame thresholds that varied depending on the characteristics of input images, as well as the center of gravity of the heat-source and hot-source regions, were analyzed in an attempt to minimize such non-flame elements in the phase of selecting flame candidate blocks. Also, to remove any false detection elements caused by camera shaking, one of the most frequently raised issues at outdoor sites, preliminary decision thresholds were adaptively set to the motion pixel ratio of input images to maximize the accuracy of the preliminary decision. Finally, in addition to the preliminary decision results, the texture correlation and intensity of the flame candidate blocks were averaged for a specific period of time and tested for their conformity with the fire decision conditions before making the final decision. To verify the fire detection performance of the proposed algorithm, a total of ten test videos were subjected to computer simulation. As a result, the fire detection accuracy of the proposed algorithm was determined to be 94.24%, with minimum false detection, demonstrating its improved performance and practicality compared to previous fixed threshold-based algorithms.

Real-time Smoke Detection Research with False Positive Reduction using Spatial and Temporal Features based on Faster R-CNN

  • Lee, Sang-Hoon;Lee, Yeung-Hak
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1148-1155
    • /
    • 2020
  • Fire must be extinguished as quickly as possible because they cause a lot of economic loss and take away precious human lives. Especially, the detection of smoke, which tends to be found first in fire, is of great importance. Smoke detection based on image has many difficulties in algorithm research due to the irregular shape of smoke. In this study, we introduce a new real-time smoke detection algorithm that reduces the detection of false positives generated by irregular smoke shape based on faster r-cnn of factory-installed surveillance cameras. First, we compute the global frame similarity and mean squared error (MSE) to detect the movement of smoke from the input surveillance camera. Second, we use deep learning algorithm (Faster r-cnn) to extract deferred candidate regions. Third, the extracted candidate areas for acting are finally determined using space and temporal features as smoke area. In this study, we proposed a new algorithm using the space and temporal features of global and local frames, which are well-proposed object information, to reduce false positives based on deep learning techniques. The experimental results confirmed that the proposed algorithm has excellent performance by reducing false positives of about 99.0% while maintaining smoke detection performance.

Reduction of False Alarm Signals for PIR Sensor in Realistic Outdoor Surveillance

  • Hong, Sang Gi;Kim, Nae Soo;Kim, Whan Woo
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.80-88
    • /
    • 2013
  • A passive infrared or pyroelectric infrared (PIR) sensor is mainly used to sense the existence of moving objects in an indoor environment. However, in an outdoor environment, there are often outbreaks of false alarms from environmental changes and other sources. Therefore, it is difficult to provide reliable detection outdoors. In this paper, two algorithms are proposed to reduce false alarms and provide trustworthy quality to surveillance systems. We gather PIR signals outdoors, analyze the collected data, and extract the target features defined as window energy and alarm duration. Using these features, we model target and false alarms, from which we propose two target decision algorithms: window energy detection and alarm duration detection. Simulation results using real PIR signals show the performance of the proposed algorithms.

Classification of False Alarms based on the Decision Tree for Improving the Performance of Intrusion Detection Systems (침입탐지시스템의 성능향상을 위한 결정트리 기반 오경보 분류)

  • Shin, Moon-Sun;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.34 no.6
    • /
    • pp.473-482
    • /
    • 2007
  • Network-based IDS(Intrusion Detection System) gathers network packet data and analyzes them into attack or normal. They raise alarm when possible intrusion happens. But they often output a large amount of low-level of incomplete alert information. Consequently, a large amount of incomplete alert information that can be unmanageable and also be mixed with false alerts can prevent intrusion response systems and security administrator from adequately understanding and analyzing the state of network security, and initiating appropriate response in a timely fashion. So it is important for the security administrator to reduce the redundancy of alerts, integrate and correlate security alerts, construct attack scenarios and present high-level aggregated information. False alarm rate is the ratio between the number of normal connections that are incorrectly misclassified as attacks and the total number of normal connections. In this paper we propose a false alarm classification model to reduce the false alarm rate using classification analysis of data mining techniques. The proposed model can classify the alarms from the intrusion detection systems into false alert or true attack. Our approach is useful to reduce false alerts and to improve the detection rate of network-based intrusion detection systems.

Dwell Time Optimization of Alert-Confirm Detection for Active Phased Array Radars

  • Kim, Eun Hee;Park, JoonYong
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.2
    • /
    • pp.107-114
    • /
    • 2019
  • Alert-confirm detection is a highly efficient method to improve phased array radar search performance. It comprises sequential detection in two steps: alert detection, in which a target is detected at a low detection threshold, and confirm detection, which is triggered by alert detection with a longer dwell time to minimize false alarms. This paper provides a design method for applying the alert-confirm detection to multifunctional radars. We find optimum dwell times and false alarm probabilities for each alert detection and confirm detection under the dual constraints of total false alarm probability and maximum allowable dwell time per position. These optimum values are expressed as a function of the mean new target appearance rate. The proposed alert-confirm detection increases the maximum detection range even with a shorter frame time than that of uniform scanning.

Video Flame Detection with Periodicity Analysis Based False Alarm Rejection (주기 신호 검출을 통한 거짓 경보 제거 기능을 갖춘 비디오 화염 감지 기법)

  • Lee, Sang-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.4
    • /
    • pp.479-485
    • /
    • 2011
  • A video flame detection method analyze the temporal and spatial characteristics of the regions which have the flame-like color and moving objects in the input video. The video flame detector should be able to reduce a false alarm rate without the degradation of flame detection capability. The conventional methods can reject the false alarm caused by the car lights and some electric lights. However they make the false alarm caused by the warning lights, neon sign, and some periodic flickering lights which have the flame-like color and temporal features. This paper propose the video flame detection method with periodicity analysis based false alarm rejection. The proposed method can detect the periodicity of the flickering electric lights and can reject the false alarm caused by the periodic electric lights. The computer simulation showed that the proposed method did not make the false alarm in the test video with the periodic electric lights. But the conventional methods made a false alarm in the same test video.

Test Bed Design of Fire Detection System Based on Multi-Sensor Information for Reduction of False Alarms (화재감지 오보 감소를 위한 다중정보기반 시스템의 Test Bed 설계)

  • Lee, Kijun;Kim, Hyeong Gweon;Lee, Bong Woo;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.107-114
    • /
    • 2012
  • Fire detection system is used for detection and alarm-generation of danger in case of fire. Most fire detection systems being used these days often malfunction from false positive and false negative errors. To improve detection reliability, an integrated fire detection algorithm using multi-senor information of heat, smoke and carbon monoxide detectors is suggested, then built and tested using the LabVIEW environment. Simulated using sensor measurement data offered by National Institute of Standards and Technology (NIST), possibility of reducing false positive and false negative errors is verified.