• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.03 seconds

Deep Learning Object Detection to Clearly Differentiate Between Pedestrians and Motorcycles in Tunnel Environment Using YOLOv3 and Kernelized Correlation Filters

  • Mun, Sungchul;Nguyen, Manh Dung;Kweon, Seokkyu;Bae, Young Hoon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.7
    • /
    • pp.1266-1275
    • /
    • 2019
  • With increasing criminal rates and number of CCTVs, much attention has been paid to intelligent surveillance system on the horizon. Object detection and tracking algorithms have been developed to reduce false alarms and accurately help security agents immediately response to undesirable changes in video clips such as crimes and accidents. Many studies have proposed a variety of algorithms to improve accuracy of detecting and tracking objects outside tunnels. The proposed methods might not work well in a tunnel because of low illuminance significantly susceptible to tail and warning lights of driving vehicles. The detection performance has rarely been tested against the tunnel environment. This study investigated a feasibility of object detection and tracking in an actual tunnel environment by utilizing YOLOv3 and Kernelized Correlation Filter. We tested 40 actual video clips to differentiate pedestrians and motorcycles to evaluate the performance of our algorithm. The experimental results showed significant difference in detection between pedestrians and motorcycles without false positive rates. Our findings are expected to provide a stepping stone of developing efficient detection algorithms suitable for tunnel environment and encouraging other researchers to glean reliable tracking data for smarter and safer City.

Intrusion Detection: Supervised Machine Learning

  • Fares, Ahmed H.;Sharawy, Mohamed I.;Zayed, Hala H.
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.305-313
    • /
    • 2011
  • Due to the expansion of high-speed Internet access, the need for secure and reliable networks has become more critical. The sophistication of network attacks, as well as their severity, has also increased recently. As such, more and more organizations are becoming vulnerable to attack. The aim of this research is to classify network attacks using neural networks (NN), which leads to a higher detection rate and a lower false alarm rate in a shorter time. This paper focuses on two classification types: a single class (normal, or attack), and a multi class (normal, DoS, PRB, R2L, U2R), where the category of attack is also detected by the NN. Extensive analysis is conducted in order to assess the translation of symbolic data, partitioning of the training data and the complexity of the architecture. This paper investigates two engines; the first engine is the back-propagation neural network intrusion detection system (BPNNIDS) and the second engine is the radial basis function neural network intrusion detection system (BPNNIDS). The two engines proposed in this paper are tested against traditional and other machine learning algorithms using a common dataset: the DARPA 98 KDD99 benchmark dataset from International Knowledge Discovery and Data Mining Tools. BPNNIDS shows a superior response compared to the other techniques reported in literature especially in terms of response time, detection rate and false positive rate.

Learning Method for minimize false positive in IDS (침입탐지시스템에서 긍정적 결함을 최소화하기 위한 학습 방법)

  • 정종근;김철원
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.978-985
    • /
    • 2003
  • The implementation of abnormal behavior detection IDS is more difficult than the implementation of misuse behavior detection IDS because usage patterns are various. Therefore, most of commercial IDS is misuse behavior detection IDS. However, misuse behavior detection IDS cannot detect system intrusion in case of modified intrusion patterns occurs. In this paper, we apply data mining so as to detect intrusion with only audit data related in intrusion among many audit data. The agent in the distributed IDS can collect log data as well as monitoring target system. False positive should be minimized in order to make detection accuracy high, that is, core of intrusion detection system. So We apply data mining algorithm for prediction of modified intrusion pattern in the level of audit data learning.

Face Detection based on Matched Filtering with Mobile Device (모바일 기기를 이용한 정합필터 기반의 얼굴 검출)

  • Yeom, Seok-Won;Lee, Dong-Su
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.3
    • /
    • pp.76-79
    • /
    • 2014
  • Face recognition is very challenging because of the unexpected changes of pose, expression, and illumination. Facial detection in the mobile environments has additional difficulty since the computational resources are very limited. This paper discusses face detection based on frequency domain matched filtering in the mobile environments. Face detection is performed by a linear or phase-only matched filter and sequential verification stages. The candidate window regions are selected by a number of peaks of the matched filtering outputs. The sequential stages comprise a skin-color test and an edge mask filtering tests, which aim to remove false alarms among selected candidate windows. The algorithms are built with JAVA language on the mobile device operated by the Android platform. The simulation and experimental results show that real-time face detection can be performed successfully in the mobile environments.

A Study on the Measures for Detection Error from the Displacement Distortion of the RADAR Waveform (레이더 전파의 왜곡현상에서 오는 탐지 오류 저감 방안 연구)

  • Kim, Jin Hieu;Kim, ChangEun;Lee, Yong-Soo
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.2 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • $21^{st}$ century is digitally civilized era. Technologies such as AI, Iot, Big Data, Mobile and etc makes this era digitally advanced. These advancement of the technology greatly impacted detection range of the radar. Human's eye sight can see about 20Km and hear 20 ~ 20000 Hz. These limitations can be overcome using radar. This radar technology is used in military, aircraft, ship, vehicle and etc. to replace human eye. However, radar technology is capable of making False Alarm Rate. This document will propose the fix of these problems. Radar's distortion includes beam refraction, diffraction and reflection. These inaccurate data result in deterioration of human judgements and my cause various casualties and damages. Radar goes through annual testing to test how many false alarm is being produced. Normal radar usually makes 10 to 20 False alarms. In emergency situation, if operator were to follow this false alarm, this might result in following false object or take 12 more seconds to follow the right object. This problem can be overcome by using different radar data from different places and angles. This helps reduces False Alarm rate and track the object twice as fast.

Analysis of the Difference in Pilot Error by Using the Signal Detection Theory (신호탐지론을 활용한 조종사 Error 차이 분석)

  • Kwon, Oh-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • This study was to analyze the difference in pilot error by using the Signal Detection Theory. The task was to detect the targeted aircraft(signal) which is different shape from many other aircraft(noise). From the two experiments, we differentiated the task difficulty followed by change in noise stimuli. Experiment 1 was to search the signal stimuli(fighter plane) while the noise stimuli(cargo plane) were increasing. The results from the Experiment 1 showed the tendency to decrease the hit rate by increasing the number of noise stimuli. However, the false alarm rate was not increased. The sensitivity(d') showed quite high. In Experiment 2, a disturbance stimulus(helicopter) was added to noise stimuli. The result was generally similar to those of Experiment 1. However, the hit rate was lower than that of Experiment 1.

Land Masking Methods of Sentinel-1 SAR Imagery for Ship Detection Considering Coastline Changes and Noise

  • Bae, Jeongju;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.437-444
    • /
    • 2017
  • Since land pixels often generate false alarms in ship detection using Synthetic Aperture Radar (SAR), land masking is a necessary step which can be processed by a land area map or water database. However, due to the continuous coastline changes caused by newport, bridge, etc., an updated data should be considered to mask either the land or the oceanic part of SAR. Furthermore, coastal concrete facilities make noise signals, mainly caused by side lobe effect. In this paper, we propose two methods. One is a semi-automatic water body data generation method that consists of terrain correction, thresholding, and median filter. Another is a dynamic land masking method based on water database. Based on water database, it uses a breadth-first search algorithm to find and mask noise signals from coastal concrete facilities. We verified our methods using Sentinel-1 SAR data. The result shows that proposed methods remove maximum 84.42% of false alarms.

Target Detection for Marine Radars Using a Data Matrix Bank Filter

  • Jang, Moon Kwang;Cho, Choon Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.151-157
    • /
    • 2013
  • Marine radars are affected by sea and rain clutters, which can make target discrimination difficult. The clutter standard deviation and improvement factor are applied using multiple parameters-moving speed of radar, antenna speed, angle, etc. When a radar signal is processed, a Data Matrix Bank (DMB) filter can be applied to remove sea clutters. This filter allows detection of a target, and since it is not affected by changes in adjacent clutters resulting from a multi- target signal, sea state clutters can be removed. In this paper, we study the level for clutter removal and the method for target detection. In addition, we design a signal processing algorithm for marine radars, analyze the performance of the DMB filter algorithm, and provide a DMB filter algorithm design. We also perform a DMB filter algorithm analysis and simulation, and then apply this to the DMB filter and cell-average constant false alarm rate design to show comparative results.

Detection technique for code acquisition in DS-SS systems employing PN matched filters

  • 유영환;문태현;주판유;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1699-1706
    • /
    • 1998
  • This paper presents a threshold decision technique for direct sequence code acquistion employing Pseudo-Noise(PN) matched filter. The probabilities of detection and false alarm are derived as a measure of the system performance in both nonfading and nonselective Rician fading channels. For received PN codes with different SNR, the proposed acquisition scheme is able to detect a desired threshold in the search mode so that this value is utilized as a threshold for the verification mode. Thus, there is no need to determine a threshold by applying the Neyman-Person ciriteron. It is shown that this scheme achieves lower probability of false alarm than the acquisition scheme based on the Neyman-Person criterion, giving comparable performance in terms of the probability of detection.

  • PDF

Sensing of OFDM Signals in Cognitive Radio Systems with Time Domain Cross-Correlation

  • Xu, Weiyang
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.545-553
    • /
    • 2014
  • This paper proposes an algorithm to sense orthogonal frequency-division multiplexing (OFDM) signals in cognitive radio (CR) systems. The basic idea behind this study is when a primary user is occupying a wireless channel, the covariance matrix is non-diagonal because of the time domain cross-correlation of the cyclic prefix (CP). In light of this property, a new decision metric that measures the power of the data found on two minor diagonals in the covariance matrix related to the CP is introduced. The impact of synchronization errors on the signal detection is analyzed. Besides this, a likelihood-ratio test is proposed according to the Neyman-Pearson criterion after deriving probability distribution functions of the decision metric under hypotheses of signal presence and absence. A threshold, subject to the requirement of probability of false alarm, is derived; also the probabilities of detection and false alarm are computed accordingly. Finally, numerical simulations are conducted to demonstrate the effectiveness of the proposed algorithm.