With the rapid evolution of technology, the size, number, and the type of databases has increased concomitantly, so data mining approaches face many challenging applications from databases. One such application is discovery of fraud patterns from agricultural product wholesale transaction instances. The agricultural product wholesale market in Korea is huge, and vast numbers of transactions have been made every day. The demand for agricultural products continues to grow, and the use of electronic auction systems raises the efficiency of operations of wholesale market. Certainly, the number of unusual transactions is also assumed to be increased in proportion to the trading amount, where an unusual transaction is often the first sign of fraud. However, it is very difficult to identify and detect these transactions and the corresponding fraud occurred in agricultural product wholesale market because the types of fraud are more intelligent than ever before. The fraud can be detected by verifying the overall transaction records manually, but it requires significant amount of human resources, and ultimately is not a practical approach. Frauds also can be revealed by victim's report or complaint. But there are usually no victims in the agricultural product wholesale frauds because they are committed by collusion of an auction company and an intermediary wholesaler. Nevertheless, it is required to monitor transaction records continuously and to make an effort to prevent any fraud, because the fraud not only disturbs the fair trade order of the market but also reduces the credibility of the market rapidly. Applying data mining to such an environment is very useful since it can discover unknown fraud patterns or features from a large volume of transaction data properly. The objective of this research is to empirically investigate the factors necessary to detect fraud transactions in an agricultural product wholesale market by developing a data mining based fraud detection model. One of major frauds is the phantom transaction, which is a colluding transaction by the seller(auction company or forwarder) and buyer(intermediary wholesaler) to commit the fraud transaction. They pretend to fulfill the transaction by recording false data in the online transaction processing system without actually selling products, and the seller receives money from the buyer. This leads to the overstatement of sales performance and illegal money transfers, which reduces the credibility of market. This paper reviews the environment of wholesale market such as types of transactions, roles of participants of the market, and various types and characteristics of frauds, and introduces the whole process of developing the phantom transaction detection model. The process consists of the following 4 modules: (1) Data cleaning and standardization (2) Statistical data analysis such as distribution and correlation analysis, (3) Construction of classification model using decision-tree induction approach, (4) Verification of the model in terms of hit ratio. We collected real data from 6 associations of agricultural producers in metropolitan markets. Final model with a decision-tree induction approach revealed that monthly average trading price of item offered by forwarders is a key variable in detecting the phantom transaction. The verification procedure also confirmed the suitability of the results. However, even though the performance of the results of this research is satisfactory, sensitive issues are still remained for improving classification accuracy and conciseness of rules. One such issue is the robustness of data mining model. Data mining is very much data-oriented, so data mining models tend to be very sensitive to changes of data or situations. Thus, it is evident that this non-robustness of data mining model requires continuous remodeling as data or situation changes. We hope that this paper suggest valuable guideline to organizations and companies that consider introducing or constructing a fraud detection model in the future.
The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.
Recent years, the use of multimedia information is rapidly increasing, and the video media is the most rising one than any others, and this field Integrates all the media into a single data stream. Though the availability of digital video is raised largely, it is very difficult for users to make the effective video access, due to its length and unstructured video format. Thus, the minimal interaction of users and the explicit definition of video structure is a key requirement in the lately developing image and video management systems. This paper defines the terms and hierarchical video structure, and presents the system, which construct the clustering-based video hierarchy, which facilitate users by browsing the summary and do a random access to the video content. Instead of using a single feature and domain-specific thresholds, we use multiple features that have complementary relationship for each other and clustering-based methods that use normalization so as to interact with users minimally. The stage of shot boundary detection extracts multiple features, performs the adaptive filtering process for each features to enhance the performance by eliminating the false factors, and does k-means clustering with two classes. The shot list of a result after the proposed procedure is represented as the video hierarchy by the intelligent unsupervised clustering technique. We experimented the static and the dynamic movie videos that represent characteristics of various video types. In the result of shot boundary detection, we had almost more than 95% good performance, and had also rood result in the video hierarchy.
Lee, Siwon;Lee, Jin-Young;Moon, Bo Yeong;Kim, Chang Soo;Shin, Yong-Gil;Rho, Jae-Young
Microbiology and Biotechnology Letters
/
v.43
no.3
/
pp.296-299
/
2015
Cowpea mild mottle virus (CPMMV) has a wide range of hosts, such as the pea family and tomato. CPMMV is a non-reported virus in Korea, and is domestically designated as a controlled virus associated with plant quarantine. In this study, a rapid diagnostic method for the detection of CPMMV at quarantine sites was developed. For the development of a user-based system, the PCR compositions and conditions use existing methods of quarantine for the viruses. Two sets of RT-PCR and nested PCR were developed in this study that could be amplified from 579 → 298 dp and 638 → 252 bp, respectively. Furthermore, a sequence inserted positive control plasmid was developed, which is able to identify false-positives resulting from laboratory contamination. The findings of this study are important for the diagnosis of CPMMV in imported crops held in plant quarantine.
In this paper, we propose the comparison method of pattern similarity for video segmentation algorithm. The shot boundary type is categorized as 2 types, abrupt change and gradual change. The representative examples of gradual change are dissolve, fade-in, fade-out or wipe transition. The proposed method consider the problem to detect shot boundary as 2-class problem. We concentrated if the shot boundary event happens or not. It is essential to define similarity between frames for shot boundary detection. We proposed 2 similarity measures, within similarity and between similarity. The within similarity is defined by feature comparison between frames belong to same shot. The between similarity is defined by feature comparison between frames belong to different scene. Finally we calculated the statistical patterns comparison between the within similarity and between similarity. Because this measure is robust to flash light or object movement, our proposed algorithm make contribution towards reducing false positive rate. We employed color histogram and mean of sub-block on frame image as frame feature. We performed the experimental evaluation with video dataset including set of TREC-2001 and TREC-2002. The proposed algorithm shows the performance, 91.84% recall and 86.43% precision in experimental circumstance.
Journal of the Microelectronics and Packaging Society
/
v.22
no.1
/
pp.15-19
/
2015
We demonstrated an inspection system for detecting discoloration of PCB Cu ball pad with an OSP surface finish. Though the OSP surface finish has many advantages such as eco-friendly and low cost, however, it often shows a discoloration phenomenon due to a heating process. In this study, the discoloration was analyzed with device-independent CIELAB color space. First of all, the PCB samples were inspected with standard lamps and CCD camera. The measured data was processed with Labview program for detecting discoloration of Cu ball pad. From the original PCB sample image, the localized Cu ball pad image was selected to reduce the image size by the binarization and edge detection processes and it was also converted to device-independent CIELAB color space using $3{\times}3$ conversion matrix. Both acquisition time and false acceptance rate were significantly reduced with this proposed inspection system. In addition, $L^*$ and $b^*$ values of CIELAB color space were suitable for inspection of discoloration of Cu ball pad.
Jo, Mi Ra;Son, Kwang Tae;Kwon, Ji Young;Mok, Jong Soo;Park, Hong Jae;Kim, Hyun Yong;Kim, Gyung Dong;Kim, Ji Hoe;Lee, Tae Seek
Korean Journal of Fisheries and Aquatic Sciences
/
v.48
no.2
/
pp.158-167
/
2015
A lateral flow immunoassay kit based on antigen-antibody interactions was developed to detect residues of beta-lactams, quinolones, tetracyclines, and sulfonamides in farmed fish. Group-specific antibodies showing cross-reactivity with other antibiotics in the same group were produced in rabbits. The rabbits were immunized eight times to obtain the maximum titers. Antibodies were extracted from the antisera collected from the immunized rabbits and produced group-specific reactions with antibiotics from the four groups. A kit was prepared that optimize conditions for the antigen-antibody reaction, using colloidal gold conjugated antibodies, and was designed to detect the four groups of antibiotics simultaneously. The kit enabled the detection of antibiotics in the four groups at below maximum residue limits (MRLs), which were $200{\mu}g/kg$ for tetracyclines, $100{\mu}g/kg$ for sulfonamides, $50{\mu}g/kg$ for beta-lactams, and $100{\mu}g/kg$ for quinolones. The cross-reactivity of the antibodies ranged from 10-80% for the sulfonamides, 20-100% for tetracyclines, 38-100% for quinolones, and 20-100% for the beta-lactams, confirming that the antibodies were group specific. The test kit was used 30 times to examine spiked antibiotics at the limits of detection (LODs) and all produced positive results, indicating high sensitivity. The LODs for the assay ranged from 4-20 ng/mL for beta-lactams, 25-50 ng/mL for sulfonamides, 20-100 ng/mL for tetracyclines, and 30-80 ng/mL for quinolones, and there were no false negative reactions at above these LODs. In addition, all of the LODs of the developed kit were correlated with high-performance liquid chromatography (HPLC) data. Our lateral flow immunoassay kit can simultaneously detect antibiotic residues from a large number of fish samples rapidly, strengthening the safety of domestic farmed and imported fish.
Background: Lymph node metastasis is believed to be a dependent negative prognostic factor of esophageal cancer. To explore detection methods with high sensitivity and accuracy for metastases to regional and distant lymph nodes in the clinic is of great significance. This study focused on clinical application of FDG PET/CT and contrast-enhanced multiple-slice helical computed tomography (MSCT) in lymph node staging of esophageal cancer. Materials and Methods: One hundred and fifteen cases were examined with enhanced 64-slice-MSCT scan, and FDG PET/CT imaging was conducted for neck, chest and upper abdomen within one week. The primary lesion, location and numbers of metastatic lymph nodes were observed. Surgery was performed within one week after FDG PET/CT detection. All resected lesions were confirmed histopathologically as the gold standard. Comparative analysis of the sensitivity, specificity, and accuracy based on FDG PET/CT and MSCT was conducted. Results: There were 946 lymph node groups resected during surgery from 115 patients, and 221 were confirmed to have metastasis pathologically. The sensitivity, specificity, accuracy of FDG PET/CT in detecting lymph node metastasis were 74.7%, 97.2% and 92.0%, while with MSCT they were 64.7%, 96.4%, and 89.0%, respectively. A significance difference was observed in sensitivity (p=0.030), but not the others (p>0.05). The accuracy of FDG PET/CT in detecting regional lymph node with or without metastasis were 91.9%, as compared to 89.4% for MSCT, while FDG PET/CT and MSCT values for detecting distant lymph node with or without metastasis were 94.4% and 94.7%. No significant difference was observed for either regional or distant lymph node metastasis. Additionally, for detecting para-esophageal lymph nodes metastasis, the sensitivity of FDG PET/CT was 72%, compared with 54.7% for MSCT (p=0.029). Conclusions: FDG PET/CT is more sensitive than MSCT in detecting lymph node metastasis, especially for para-esophageal lymph nodes in esophageal cancer cases, although no significant difference was observed between FDG PET/CT and MSCT in detecting both regional and distant lymph node metastasis. However, enhanced MSCT was found to be of great value in distinguishing false negative metastatic lymph nodes from FDG PET/CT. The combination of FDG PET/CT with MSCT should improve the accuracy in lymph node metastasis staging of esophageal cancer.
Purpose: The purpose of this study is to assess the ability of power Doppler sonography in the detection of acute pyelonephritis. Materials and Methods: We performed gray scale sonography, power Doppler sonography, and $^{Tc-99m}DMSA$ scintigraphy of the kidney in 80 patients with symptoms suggesting upper urinary tract infection. All imaging studies were obtained within 4 days. On $^{Tc-99m}DMSA$ scintigraphy, decreased radioactivity or photopenic lesions were considered indicative of acute pyelonephritis. Triangular areas of decreased perfusion identified on power Doppler sonography were considered as parenchymal lesions of acute pyelonephritis. The results of gray scale sonography and power Doppler sonography were retrospectively analysed and compared with those of $^{Tc-99m}DMSA$ scintigraphy which was given as the standards of reference. Results: For 40(85%) of the 47 patients with scintigraphy-proven acute pyelonephritis, power Doppler sonography diagnosed this condition on the correct side. The acute pyelonephritis which was not revealed by power Doppler sonography was observed in seven patients. Also, in three patients, false-positive indication of pyelonephritis was given by power Doppler sonography. Gray scale sonography showed positive findings in 23(49%) of 47 patients with positive findings on scintigraphy. Conclusion: Power Doppler sonography seems to be less sensitive than $^{Tc-99m}DMSA$ DMSA scintigraphy but significantly more sensitive than gray scale sonography for the detection of acute pyelonephritis in children. Power Doppler sonography shows promise as a noninvasive means of assessing renal cortical perfusion in children with clinically suspected acute pyelonephritis.
We introduce a current status and future plans of Korea Microlensing Telescope Network (KMTNet) microlensing experiments, which include an observational strategy, pipeline, event-finder, and collaborations with Spitzer. The KMTNet experiments were initiated in 2015. From 2016, KMTNet observes 27 fields including 6 main fields and 21 subfields. In 2017, we have finished the DIA photometry for all 2016 and 2017 data. Thus, it is possible to do a real-time DIA photometry from 2018. The DIA photometric data is used for finding events from the KMTNet event-finder. The KMTNet event-finder has been improved relative to the previous version, which already found 857 events in 4 main fields of 2015. We have applied the improved version to all 2016 data. As a result, we find that 2597 events are found, and out of them, 265 are found in KMTNet-K2C9 overlapping fields. For increasing the detection efficiency of event-finder, we are working on filtering false events out by machine-learning method. In 2018, we plan to measure event detection efficiency of KMTNet by injecting fake events into the pipeline near the image level. Thanks to high-cadence observations, KMTNet found fruitful interesting events including exoplanets and brown dwarfs, which were not found by other groups. Masses of such exoplanets and brown dwarfs are measured from collaborations with Spitzer and other groups. Especially, KMTNet has been closely cooperating with Spitzer from 2015. Thus, KMTNet observes Spitzer fields. As a result, we could measure the microlens parallaxes for many events. Also, the automated KMTNet PySIS pipeline was developed before the 2017 Spitzer season and it played a very important role in selecting the Spitzer target. For the 2018 Spitzer season, we will improve the PySIS pipeline to obtain better photometric results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.