• Title/Summary/Keyword: False Alarm Probability

Search Result 194, Processing Time 0.029 seconds

PN code Acquisition Method Using Array Antenna Systems for DS/CDMA (DS/CDMA 배열 안테나 시스템에서 PN 동기 획득 방법)

  • Cho, Hui-Nam;Choi, Seung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.196-199
    • /
    • 2004
  • This paper presents a structure of the searcher using the space diversity in array antenna system operating in the DS/CDMA signal environments. The new technique exploits the fact that the In-phase and Quadrature components of interferers can respectively be viewed as independent Gaussian noise at each antenna element in most practical CDMA (Code Division Multiple Access) signal environments. The proposed PN acquisition scheme is a single dwell serial PN acquisition system consisting of two stage, that is, the searching stage and the verification stage. The searching stage correlates the received signals with the local PN oscilator for obtaining the synchronous energy at the entire uncertainty region. The verification stage compares the searching energy with the optimal threshold, which is pre-designed in the Lock-Detector, and decides whether the acquisition is successful or fail. In this paper, we analyzed the relationship of both diversity order and the mean acquisition time. In general, It is known that the mean acquisition time decreases significantly as the number of antenna elements increases. But, the enhancement of the performance is saturated in terms of PN acquisition scheme. Therefore, to decrease the mean acquisition time, we must design the optimal array antenna system by considering the operating SNR range of the receiver, the detection probability, and the false alarm probability. The performance of the proposed acquisition scheme is analyzed in frequency-selective Rayleigh fading channels. In this paper, the effect of the number of antenna elements on acquisition scheme is considered in terms of the detection probability, false alarm probability. and the mean acquisition time.

  • PDF

Performance Analysis of DMF Acquisition System in Frequency-Selective Rayleigh Fading Channel (주파수 선택적 레일리 페이딩 채널에서의 DMF 초기동기 장치의 성능분석)

  • 김성철;이연우;조춘근;박형근;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7B
    • /
    • pp.1351-1360
    • /
    • 1999
  • In frequency selective channels, conventional PN code acquisition schemes are not ideal candidates. This is because they are primarily designed for the AWGN channel. In this paper, a direct-sequence spread-spectrum(DSSS) PN code acquisition system based on digital matched filtering (DMF) with automatic threshold control(ATC) algorithm is presented and analyzed with regards to probability of detection and probability of false alarm. These two important probabilities, the probability of detection ($P_D$) and the probability of false alarm ($P_{FA}$) are derived and analyzed in considering Doppler shift, sampling rate, mean acquisition time, and PN chip rate in frequency selective Rayleigh fading channel when using serial-search method as detection technique. From computer simulation results of a DMF acquisition system model, it is shown that the performance of the acquisition system using ATC algorithm is better than that of constant threshold system.

  • PDF

M & S Tool for Analyzing the Detection Performance in Bistatic Radar (바이스태틱 레이더의 탐지 성능 분석용 M & S Tool)

  • Kim, Kwan-Soo;Youn, Jae-Hyuk;Yang, Hoon-Gee;Chung, Young-Seek;Lee, Won-Woo;Bae, Kyung-Bin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.631-640
    • /
    • 2011
  • This paper proposes a M & S Tool for simulating the detection performance in the bistatic radar system. After examing the interrelationship among the bistatic radar parameters, $P_d$(probability of detection), $P_{fa}$(probability of false alarm) and ��SNR of the received signal, we analyze the range of the bistatic radar range product and range sum. We derive the number of integration of the received pulses that satisfies the required detection performance of the bistatic radar system, along with the analysis of the performance degradation in the jammer scenario. Finally, the analyzed results are implemented in the M & S Tool which consists of 4 modules.

A Study on the PN code Acquisition for DS-CDMA System under Nakagami-m Fading (나카가미-m 페이딩을 고려한 DS-CDMA 시스템의 PN 부호 획득에 관한 연구)

  • 정남모;박진수
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.3
    • /
    • pp.78-83
    • /
    • 2001
  • In this paper, we are considered Nakagami-m fading, which can model variable multipath mobile radio communication channel, in DS-CDMA system. System modeling using nakagami -m fading is suited for urban mobile communication channel with multipath. We used adaptive serial search PN code acquisition scheme and derived the detection probability($P_D$) and false alarm probability($P_FA$) which have influence on code acquisition time, over Nakagami-m fading. Detection probability($P_D$) and false alarm probability($P_FA$) are detection variable to decide PN code acquisition time and should use to calculate mean and variance. of acquisition time. From computer simulation, we analyzed mean and variance about PN code acquisition of fading channel. Then we can apply it to the H/W design of mobile communication.

  • PDF

Design and Performance Analysis of Energy-Aware Distributed Detection Systems with Multiple Passive Sonar Sensors (다중 수동 소나 센서 기반 에너지 인식 분산탐지 체계의 설계 및 성능 분석)

  • Kim, Song-Geun;Hong, Sun-Mog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.9-21
    • /
    • 2010
  • In this paper, optimum design of distributed detection is considered for a parallel sensor network system consisting of a fusion center and multiple passive sonar nodes. Nonrandom fusion rules are employed as the fusion rules of the sensor network. For the nonrandom fusion rules, it is shown that a threshold rule of each sensor node has uniformly most powerful properties. Optimum threshold for each sensor is investigated that maximizes the probability of detection under a constraint on energy consumption due to false alarms. It is also investigated through numerical experiments how signal strength, false alarm probability, and the distance between three sensor nodes affect the system detection performances.

A computation method of reliability for preprocessing filters in the fire control system using Markov process and state transition probability matrix (Markov process 및 상태천이확률 행렬 계산을 통한 사격통제장치 전처리필터 신뢰성 산출 기법)

  • Kim, Jae-Hun;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.131-139
    • /
    • 1999
  • An easy and efficient method is proposed for a computation of reliability of preprocessing filters in the fire control system when the sensor data are frequently unreliable depending on the operation environment. It computes state transition probability matrix after modeling filter states as a Markov process, and computing false alarm and detection probability of each filter state under the given sensor failure probability. It shows that two important indices such as distributed state probability and error variance can be derived easily for a reliability assessment of the given sensor fusion system.

  • PDF

Effects of Adjacent Channel Leakage on an Energy Detection Based Spectrum Sensing (인접 채널 누설이 에너지 검파 기반 스펙트럼 센싱에 미치는 영향)

  • Lim, Chang Heon;Kim, Hyung Jung;Kim, Chang Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.542-547
    • /
    • 2014
  • When a primary user transmits over some frequency band assigned to it, most of its transmission power tends to be concentrated in the band but a small portion of it spreads into the adjacent bands. Thus the false alarm probability for the adjacent bands can be higher than expected, even though no primary users are active in the bands. A previous work evaluated the effects of the adjacent channel leakage on the performance of an energy detection based spectrum sensing but it did not take into account the fading phenomenon. In this paper, we analyze the effects of the adjacent channel leakage on an energy detection based spectrum sensing scheme in terms of detection probability and false alarm probability in a fading environment.

A Novel GNSS Spoofing Detection Technique with Array Antenna-Based Multi-PRN Diversity

  • Lee, Young-Seok;Yeom, Jeong Seon;Noh, Jae Hee;Lee, Sang Jeong;Jung, Bang Chul
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.169-177
    • /
    • 2021
  • In this paper, we propose a novel global navigation satellite system (GNSS) spoofing detection technique through an array antenna-based direction of arrival (DoA) estimation of satellite and spoofer. Specifically, we consider a sophisticated GNSS spoofing attack scenario where the spoofer can accurately mimic the multiple pseudo-random number (PRN) signals since the spoofer has its own GNSS receiver and knows the location of the target receiver in advance. The target GNSS receiver precisely estimates the DoA of all PRN signals using compressed sensing-based orthogonal matching pursuit (OMP) even with a small number of samples, and it performs spoofing detection from the DoA estimation results of all PRN signals. In addition, considering the initial situation of a sophisticated spoofing attack scenario, we designed the algorithm to have high spoofing detection performance regardless of the relative spoofing signal power. Therefore, we do not consider the assumption in which the power of the spoofing signal is about 3 dB greater than that of the authentic signal. Then, we introduce design parameters to get high true detection probability and low false alarm probability in tandem by considering the condition for the presence of signal sources and the proximity of the DoA between authentic signals. Through computer simulations, we compare the DoA estimation performance between the conventional signal direction estimation method and the OMP algorithm in few samples. Finally, we show in the sophisticated spoofing attack scenario that the proposed spoofing detection technique using OMP-based estimated DoA of all PRN signals outperforms the conventional spoofing detection scheme in terms of true detection and false alarm probability.

Adaptive CFAR Algorithm using Two-Dimensional Block Estimation (이차원 블록 추정을 이용한 적응 CFAR 알고리즘)

  • Choi Beyung Gwan;Lee Min Joon;Kim Whan Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.101-108
    • /
    • 2005
  • Adaptive constant false alarm rate(CFAR) algorithm is used for good detection probability as well as constant false alarm rate in clutter background. Especially, filtering technique adaptive to spatial variation is necessary for improving detection quality in non stationary clutter environment which has spatial correlation and large magnitude deviation. In this paper, we propose a two-dimensional block interpolation(TBI) adaptive CFAR algorithm that calculates the node estimate in the fred two dimensional region and subsequently determines the final estimate for each resolution cell by two-dimensional interpolation. The proposed method is efficient for filtering abnormal ejection by adopting distribution median in fixed region and also has advantage of reducing required memory space by using estimation method which gets final values after calculating the block node values. Through simulations, we show that the proposed method is superior to the traditional adaptive CFAR algorithms which are transversal or recursive in aspect of the detection performance and required memory space.

Design and Implementation of Static Program Analyzer Finding All Buffer Overrun Errors in C Programs (C 프로그램의 버퍼 오버런(buffer overrun) 오류를 찾아 주는 정적 분석기의 설계와 구현)

  • Yi Kwang-Keun;Kim Jae-Whang;Jung Yung-Bum
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.5
    • /
    • pp.508-524
    • /
    • 2006
  • We present our experience of combining, in a realistic setting, a static analyzer with a statistical analysis. This combination is in order to reduce the inevitable false alarms from a domain-unaware static analyzer. Our analyzer named Airac(Array Index Range Analyzer for C) collects all the true buffer-overrun points in ANSI C programs. The soundness is maintained, and the analysis' cost-accuracy improvement is achieved by techniques that static analysis community has long accumulated. For still inevitable false alarms (e.g. Airac raised 970 buffer-overrun alarms in commercial C programs of 5.3 million lines and 737 among the 970 alarms were false), which are always apt for particular C programs, we use a statistical post analysis. The statistical analysis, given the analysis results (alarms), sifts out probable false alarms and prioritizes true alarms. It estimates the probability of each alarm being true. The probabilities are used in two ways: 1) only the alarms that have true-alarm probabilities higher than a threshold are reported to the user; 2) the alarms are sorted by the probability before reporting, so that the user can check highly probable errors first. In our experiments with Linux kernel sources, if we set the risk of missing true error is about 3 times greater than false alarming, 74.83% of false alarms could be filtered; only 15.17% of false alarms were mixed up until the user observes 50% of the true alarms.