• Title/Summary/Keyword: Falling Film

Search Result 109, Processing Time 0.028 seconds

Characteristics of Heat and Mass Transfer for a Falling Film Type Absorber with Insert Spring Tubes (스프링삽입형 유하액막식 흡수기의 열 및 물질전달 특성)

  • 윤정인;오후규;백목효부
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1501-1509
    • /
    • 1995
  • It is known that the heat and mass transfer characteristics in the absorber are most sensitive of the temperature boost of all the heat exchangers and the development of a more efficient absorber should be highly important. This paper describes absorption experiments made with different inside tube diameters, tube length and tube shapes. The purpose of this study is to acquire basic knowledge about heat and mass transfer in a falling film type absorber with vertical inner tubes. Heat and mass transfer were measured for water vapor absorption into a Lithium Bromide-water solution flowing down an absorber of vertical inner tubes. As a result, insert spring tube compares bare tube and heat transfer improved by order of insert spring tube P2(pitch 20 mm) and P1(pitch 10 mm).

Effect of Wavy Flow of Vertical Falling Film on the Absorption Performance

  • Kim, Jung-Kuk;Cho, Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.3
    • /
    • pp.158-166
    • /
    • 2005
  • The present study investigated experimentally and numerically the enhancement of absorption performance due to the waviness of falling film in the vertical absorber tube. The momentum, energy and mass diffusion equations were utilized to find out temperature and concentration profiles at both the interfaces of liquid solution and refrigerant vapor and the wall. Flow visualization was performed to find out the wetting characteristics of the falling film. The maximum heat transfer coefficient was obtained for the wavy flow using spring as an insert device through both numerical and experimental studies. Based on the numerical and experimental results, the maximum absorption rate was found for the wavy-flow using spring as the insert device. The differences between experimental and analytical results ranged from $5.0\;to\;25\%\;when\;Re_j>100$.

Analysis of Falling-film Generator in Ammonia-water Absorption System (암모니아-물 흡수식 시스템에서 유하액막식 발생기의 해석)

  • 김병주;손병후;구기갑
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.422-430
    • /
    • 2001
  • In the present study, an evaporative generation process of ammonia-water solution film on the vertical plate was analysed. For the utilization of waste heat, hot water of low temperature was used as the heat source. The continuity, momentum, energy and diffusion equations for the solution film and vapor mixture were formulated in integral forms and solved numerically. Counter-current solution-vapor flow resulted in the refrigerant vapor of the higher ammonia concentration than that of co-current flow. Eve the rectification of refrigerant vapor was observed near the inlet of solution film in counter-current flow. For the optimum operation of generator using hot water, numerical experiments, based on the heat exchange and generation efficiencies. revealed the inter-relationships among the Reynolds number of the solution film and hot water, and the length of generator. Enhancement of heat and mass transport in the solution film was found to be very effective for the improvement of generation performance, especially at high solution flow rate.

  • PDF

The Effect of Contrastive Discussion Based on the Historically Debated Concepts of Falling and Horizontal Motion on the Conceptual Change of 7 Year Pupils by Introducing Weightless Context (수평 및 낙하 운동에 대한 과학사적 대립개념의 대비적 토론이 무중력 상황 도입을 통한 중학교 1학년 학생의 개념 변화에 미친 효과)

  • Kim, Jae-Woo;Oh, Won-Kun;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.1
    • /
    • pp.31-44
    • /
    • 1997
  • One class of grade 7 was chosen as a control group, and the other as an experimental group. The control group watched only a film of motion in weightless situation, but the experimental group had a contrastive discussion before watching the film. In pretest, pupils were given contrasted views between the pre-Galilean and post-Galilean about falling and horizontal motion of bodies, and asked to choose one from two points of view and to write the reason why they choose it. After the pretest, control group students watched the same film as the experimental group did. On the falling problem, the control group ignored the contents of the film or regarded related contents as not related contents. However, through the contrastive discussion, experimental group pupils reconstructed their past vague ideas and noticed the cause of falling which was not perceived by the control group. On the horizontal motion, some in the control group agreed with post-Galilean view points after watching the film. Some of the pupils in the experimental group agreed with the post-Galilean viewpoint after performing the contrastive discussion. However, most of them agreed after watching the film. So we can conclude that the contrastive discussion which helped students to reconstruct their ideas made the difference between the two groups.

  • PDF

Non-absorbable Gas Effects on Heat and Mass Transfer in Falling Film Absorption

  • Kim, Byongjoo;Lee, Chunkyu
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.581-589
    • /
    • 2003
  • Film absorption involves simultaneous heat and mass transfer in the gas-liquid system. While the non-absorbable gas does not participate directly In the absorption process. its pretence does affect the overall heat and mass transfer. An experimental study was performed to investigate the heat and mass transfer characteristics of LiBr-H$_2$O solution flow ing over 6-row horizontal tubes with the water vapor absorption in the pretence of non-absorbable gases. The volumetric concentration of non-absorbable gas, air, was varied from 0.17 to 10.0%. The combined effects of the solution flow rate and its concentration on the heat and mass transfer coefficients were also examined. The presence of 2% volumetric concentration of air resulted in a 25% reduction in the Nusselt number and 41% reduction in the Sherwood number Optimum film Reynolds number was found to exist at which the heat and mass transfer reach their maximum value independent of air contents. Reduced Nusselt and Sherwood numbers. defined as the ratio of Nusselt and Sherwood numbers at given non-absorbable gas content to that with pure water vapor, were correlated to account for the reduction in the heat and mass transfer due to non-absorbable gases in a falling film absorption process.

3D Numerical Study of Horizontal Falling Film Evaporator in Multi Effect Distillation (MED) Plant (MED 담수기내 수평관 강하막식 증발기의 3D 수치해석적 연구)

  • Kim, Soo Jae;Je, Junho;Kim, Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.513-522
    • /
    • 2013
  • In the present work, a numerical study of a horizontal falling film evaporator in a multi-effect distillation (MED) plant is performed. Tube bundles in the evaporator are described as porous media, and a volume-averaged method is applied. To calculate the fluid flow and phase change in the evaporator due to heat transfer in the system, FLUENT and user-defined functions (UDF) are used. To observe the performance of the evaporator under different operational conditions, tests are conducted for a steam mass flux ranging from 0.5 to 2.5 $kg/m^2s$ in the horizontal tube, for mass fraction of the noncondensable gas in the tube inlet ranging from 0% to 1%, and for film Reynolds numbers ranging from 100 to 1,000 for the falling film. The evaporation rate increases with the steam mass flux and Reynolds number. In contrast, the evaporation rate decreases by 0.87% with a 1% increase in the mass fraction of the noncondensable gas in the tube.

Numerical study on the flow characteristics of horizontal tube bundle (Tube-bundle형 열교환기의 액막 유동에 관한 시뮬레이션)

  • Kim, Pil-Hwan;Choi, Du-Youl;Woo, Ju-Sik;Jeong, Hyo-Min;Chung, Han-Shik;Kim, Kyeong-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1256-1261
    • /
    • 2009
  • Seawater amounts to 70% of the earth and represents a quite unlimited resource for the production of fresh water by desalination processes and for the extraction of dissolved salts present in it. Recently, the falling film evaporation has increased in interest as an efficient method for seawater desalination system. In the desalination system, the flow characteristics of the falling film is very important issue to make highly efficient system. So, this study is taken to investigate numerically the falling film thickness on the inlet Renold Number ranges are 400 to 700. Numerical simulations are performed using FLUENT6.3.26, a commercial CFD code.

  • PDF

Evaporation of Water in an Aqueous Lithium Bromide Solution flowing over a Horizontal Tube

  • Kim, Dong-Kwan;Kim, Moo-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.57-62
    • /
    • 2001
  • Falling film heat transfer analyses with aqueous lithium bromide solution were performed to investigate the transfer characteristics of the copper tubes. Finned (knurled) tube and a smooth tube were selected as test specimens. Averaged generation fluxes of water and the heat flux were obtained. As the film flow rate of the solution increased, the generation fluxes of water decreased for both tubes due to the fact that the heat transfer resistance increased with the film thickness. The effect of the enlarged surface area at the knurled tube was supposed to be dominant at a small flow rate. The generation fluxes of water increased with the increasing degree of tube wall superheat. Nucleate boiling is supposed to occur at a wall superheat of 20K for a smooth tube, and at 10K for a knurled tube. The increased performance of the knurled tube was supposed to mainly come from the effect of the increased heating surface area.

  • PDF

Characteristics of Absorption and Heat Transfer for Film Falling along a Vertical Inner Tube (2nd. Report, Characteristics of Heat Transfer) (수직관내(垂直管內)를 흘러내리는 액막식(液膜式) 흡수기(吸收器)의 흡수(吸收) 및 열전달특성(熱傳達特性)(제(第)2보(報) 열전달특성(熱傳達特性)))

  • Ohm, K.C.;Rie, D.H.;Choi, G.G.;Kasiwagi, Takao;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.257-264
    • /
    • 1993
  • This is the second report of a three part study on the absorption and heat transfer characteristics of absorber, the correlation of refrigerating capacity and heating capacity. The 2nd report deals with the heat transfer characteristics of a vertical falling film type absorber of inner copper tube. The solute is LiBr-Water solution(60wt%) and the solvent is water vapor. The film Reynoles numbers are varied in the range of 35~130. The states of LiBr solution at the top of absorber are supercooled liquid and superheated liquid. The results are summarized as follows ; Heat transfer results reveal that for the absorption of falling film, the state of LiBr solution appears to be influential in determining the heat transfer. Thus, for the state of supercooled liquid, heat transfer coefficient decreases with increasing the film Reynolds number, but in the condition of superheated liquid, it increases conversely. The mass transfer coefficients that were presented in the 1st.report and heat transfer coefficients of this paper are presented as the dimensionless correlation. The optimum water flowrate which brings about maximum value of heat flux in the film exists, and that increases with increasing the cooling water temperature.

  • PDF

A Numerical Study on Heat and Mass Transfer in a Falling Film of Vertical Plate Absorber Cooled by Air (공랭형 수직평판 흡수기 액막에서의 열 및 물질전달에 관한 수치적 연구)

  • 김선창;오명도;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1071-1082
    • /
    • 1995
  • Numerical analyses have been performed to obtain the absorption heat and mass transfer coefficients and the absorption mass flux from a falling film of the LiBr aqueous solution which is cooled by cooling air. Heat flux at the wall is specified in terms of the heat transfer coefficient of cooling air and the cooling air temperature. Effects of operating conditions, such as the heat transfer coefficient, the cooling air temperature, the system pressure and the solution inlet concentration have been investigated in view of the local absorption mass flux and the total mass transfer rate. Effects of film thickness and film Reynolds number on the heat and mass transfer coefficients have been also estimated. Analyses for the constant wall temperature condition have been also carried out to examine the reliability of present numerical method by comparing with previous investigations.