• Title/Summary/Keyword: Falling Ball Viscometer

Search Result 8, Processing Time 0.022 seconds

A Study on the Flow Behavior of the Viscoelastic Fluids in the Falling Ball Viscometer (낙구식 점도계를 이용한 점탄성유체의 유동에 관한 연구)

  • 전찬열
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 1988
  • The falling ball viscometer has been widely used for measuring the viscosity of the Newtonian fluids because of its simple theory and low cost. The use of the falling ball viscometer for measuring the non-Newtonian viscosity has been of interest to rheologists for some years. The analysis of the experimental results in a falling ball viscometer rest on Stokes law which yields the terminal velocity for a sphere moving through an infinite medium of fluids. An attempt to use the falling ball viscometer to measure the non-Newtonian viscosity in the intermediate shear rate ranEe was sucessfully accomplished by combining the direct experimental obserbations with a simple analytical model for the average shear-stress and shear rate at, the surface of a sphere. In the experiments with highly viscoelastic polyacrylamide solutions the terminal velocity was observed to be dependent on the time interval between the dropping of successive balls. The time-dependent phenomenon was used to determine characteristic diffusion times of the concentrated solutions of polyacrylamide.

  • PDF

A Novel Viscosity Measurement Technique Using a Falling Ball Viscometer with a High-speed Camera

  • Jo, Won-Jin;Pak, Bock-Choon;Lee, Dong-Hwan
    • KSTLE International Journal
    • /
    • v.8 no.1
    • /
    • pp.16-20
    • /
    • 2007
  • This study introduces a new approach to a falling ball viscometer by using a high speed motion camera to measure the viscosity of both Newtonian and non-Newtonian fluids from the velocity-time data. This method involves capturing continuous photographs of the entire falling motion of the ball as the ball accelerates from the rest to the terminal velocity state. The velocity of a falling ball was determined from the distance traversed by the ball by examining video tape frame by frame using the marked graduations on the surface of the cylinder. Each frame was pre-set at 0.01. Glycerin 74% was used for Newtonian solution, while aqueous solutions of Polyacrylamide and Carboxymethyl Cellulose were for non-Newtonian solutions. The experimental viscosity data were in good agreements with the results obtained from a rotating Brookfield viscometer.

An experimental study on the characteristic times of viscoelastic fluids by falling ball viscometer (낙구식 점도계를 이용한 점탄성 유체의 특성시간에 관한 실험적 연구)

  • 전찬열;유상신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.241-250
    • /
    • 1990
  • Characteristic relaxation time and characteristic diffusion time of viscoelastic fluids are determined experimentally by measuring the zero-shear-rate viscosity by falling ball viscometer and the infinite-shear-rate viscosity by capillary tube viscometer. Fluids used in experiments are aqueous solutions of polyacrylamide Separan AP-273 and the polymer concentrations range from 300 to 2000 wppm. A newly designed laser beam and timer system is employed to overcome the difficulty in measuring terminal velocities of the low concentration solutions. Ball removal device is prepared to remove the dropped ball from the bottom of cylinder without disturbing the testing fluid. In order to measure the zero-shear-rate viscosity, densities of hollow aluminium balls are adjusted very close to the densities of testing fluids. Characteristic diffusion time, which is ball viscometer. However, terminal velocity of a needle by falling ball viscometer is not affected by the time interval of dropping needles and characteristic diffusion time is not measured with a dropping needle. Powell-Eyring model predicts the highest values of the characteristic relaxation times among models used for heat transfer experimental works for a given polymer solution. As degradation of a polymer solution continues, the zero-shear-rate viscosity decreases more seriously than the infinite-shear-rate viscosity. Characteristic relaxation times of polymer solutions decreases as degradation continues.

Effect of Temperature and Pressure on the Viscosity of Benzene (벤젠의 점성도에 대한 온도와 압력의 영향)

  • Jeong Rim Kim;Jin Burm Kyong;Mi Hyun Lew
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.12
    • /
    • pp.1003-1009
    • /
    • 1993
  • The viscosities of benzene have been determined at several temperatures and pressures to investigate the effect of temperature and pressure on the viscosity of benzene in liquid phase. When a falling ball viscometer with a constant volume contained a given amount of liquid benzene at desired temperatures and pressures, the viscosities of benzene in the viscometer could be evaluated from the measurements of the falling time of a skinker. The variations of the specific volume and the free volume of liquid benzene with temperature and pressure were, from the results, searched out. Finally, the effects of temperature and pressure on the viscosity of benzene were discussed by means of the variations of free volume with temperature and pressure.

  • PDF

Measurements of Viscosity and Characteristic Times of Viscoelastic Fluids with the Falling ball Viscometer and Capillary Tube Viscometer (낙구식 점도계와 모세관 점도계를 이용한 점탄성유체의 점성과 특성시간의 측정)

  • 전찬열;황태성;유상신
    • The Korean Journal of Rheology
    • /
    • v.2 no.2
    • /
    • pp.19-27
    • /
    • 1990
  • 레이저와 타이머장치를 설치한 낙구식 점도계에서 구와 니들이 주어진 구간을 통과 하는 시간을 측정하여 종말속도를 정확히 결정하였고 점성이 작은유체와 낮은 전단률 점성 과 영전단률 점성은 속이 빈 알루미늄 구와 니들이 이용하여 측정하였다. 알루미늄 구와 니 들의 속에 철분을 삽입하여 밀도를 다양하게 변화시켰다. 낙구식 점도계에서 측정한 낮은 전단률 점성과 영 전단률 점성 그리고 모세관점도계에서 측정한 높은전단률 점성과 무한 전 단률 점성을 이용하여 점탄성 유체의 특성이완시간을 결정하였다. 실린더 속의 시험용 유체 를 교란시키지 않고 밑면에 떨어진 구를 회수하는 장치를 설치하였다. 이 장치는 하나의 구 로써 점탄성유체의 특성확산시간을 측정하는데 대단히 효과적이었다. Polyacrylamide Separan AP-273 용액(농도 500-200 wppm)의 특성이안시간과 특성화산시간을 낙구식 점도 계와 모세관 점도계의 실험결과를 이용하여 결정하고 폴리며 용액의 퇴화 현상을 실험적으 로 분석하였다.

  • PDF

A Study of the Characteristics Times of Polymer Solutions Using the PIV System (PIV 시스템을 이용한 폴리머 용액의 특성시간에 관한 실험적 연구)

  • Lee, Jae-Su;Jeon, Chan-Yeal;Park, Jong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1552-1557
    • /
    • 2004
  • Characteristics diffusion time of viscoelastic fluids are determined experimental results of terminal velocity by using the falling ball viscometer. The characteristics diffusion time of viscoelastic fluids are determined with help of the sphere device which is installed to return the dropped sphere from the bottom of the test cylinder without disturbing the working fluids. Terminal velocity of th sphere the reason why experimental of characteristics diffusion time that it is have an effect on the time interval of the measuring. Viscous of the fluid the temperature changed in order to have an effect on temperature and terminal velocity of the ball it becomes larger the possibility of knowing. A result of visualization for flow phenomena of around the sphere uses the PIV and the density of the polymer solution which it appears 2000wppm is to a case which is the right and left becomes symmetry to be it will be able to confirm and according to the time interval, to observed velocity vector of same at first drop the sphere.

  • PDF

A Study on the Drag and Heat Transfer Reduction Phenomena and Degradation Effects of the Viscoelastic Fluids (점탄성유체의 저항 및 열전달 감소현상과 퇴화의 영향에 관한 연구)

  • Eum, C.S.;Jeon, C.Y.;Yoo, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.37-48
    • /
    • 1990
  • The drag and heat transfer reduction phenomena and degradation effects of drag reducing polymer solutions which are known as the viscoelastic fluids are investigated experimentally for the turbulent circular tube flows. Two stainless steel tubes are used for the experimental flow loops. Aqueous solutions of Polyacrylamide Separan AP-273 with concentrations from 300 to 1000 wppm are used as working fluids. Flow loops are set up to measure the friction factors and heat transfer coefficients of test tubes in the once-through system and the recirculating flow system. Test tubes are heated by power supply directly to apply constant heat flux boundary conditions on the wall. Capillary tube viscometer and falling ball viscometer are used to measure the viscous characteristics of fluids and the characteristic relaxation time of a fluid is determined by the Powell-Eyring model. The order of magnidude of the thermal entrance length of a drag reducing polymer solution is close to the order of magnitude of the laminar entrance length of Newtonian fluids. Dimensionless heat transfer coefficients of the viscoelastic non-Newtonian fluids may be represented as a function of flow behavior index n and newly defined viscoelastic Graetz number. As degradation continues viscosity and the characteristic relaxation time of the testing fluids decrease and heat transfer coefficients increase. The characteristic relaxation time is used to define the Weissenberg number and variations of friction factors and heat transfer coefficients due to degradation are presented in terms of the Weissenberg number.

  • PDF

The heat transfer characteristics of viscoelastic non-newtonian fluids in the entrance region of circular tube flows (원형관속을 유동하는 점탄성 유체의 입구 영역 열전달 특성에 관한 연구)

  • 엄정섭;황태성;유상신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1032-1043
    • /
    • 1989
  • The heat transfer characteristics of the drag reducing polymer solutions are investigated experimentally in the thermal entrance region of circular tube flows. Fluids used in experiments are the aqueous solutions of high molecular polymer, polyacrylamide Separan AP-273 and the range of polymer concentrations is from 20 to 1000 wppm. Two stainless steel tubes with inside diameter 8.5mm(L/D=712) and 10.3mm(L/D=1160) are used for the heat transfer flow loops. The flow loop is set up to measure friction factors and heat transfer coefficients of test sections in two different modes; the recirculating flow system and once-through flow system. The test tubes are heated directly by electricity to apply the constant heat flux boundary conditions to the wall. Three different types of adaptors are used to observe the effects of the upstream flow conditions of the heat transfer test sections. The viscosity and characteristic relaxation time of the test fluids circulating in the flow system are measured by the capillary tube viscometer and falling ball viscometer at regular time intervals. The installed adaptors exhibit slight effect on the entrance heat transfer of Newtonian fluid. However, no noticeable effects are observed for the entrance heat transfer of the drag reducing fluids. The order of magnitude of the thermal entrance lengths of the drag reducing fluids which follow the minimum friction asymptote is much longer than that of Newtonian fluids in turbulent flows. A new dimensionless parameter, the viscoelastic Graetz number, is defined and all the experimental data are recasted in terms of the viscoelastic Graetz number. The local Nusselt number of the viscoelastic fluids is represented as a function of flow behavior index n and the viscoelastic Graetz number. As degradation continues the viscosity and the characteristic relaxation time of the testing fluids decrease. Weissenberg number defined by the relaxation time and D/V appears to be a proper dimensionless parameter in describing degradation effects on heat transfer of the viscoelastic fluids.