• Title/Summary/Keyword: Fall risk prediction

Search Result 16, Processing Time 0.019 seconds

Possibility Based Design Optimization of a Light Aircraft using Database Driven Approach

  • Tyan, Maxim;Nguyen, Nhu Van;Lee, Jae-Woo
    • 한국항공운항학회:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.25-28
    • /
    • 2015
  • Aircraft conceptual design usually uses low to medium fidelity analysis to determine the basic configuration of an aircraft. Optimum solution is bounded by at least one of the constraints in most cases. This solution has risk to fail at later stage when analyzed with more sophisticated analysis tools. This research uses pre-constructed database to estimate the analysis prediction errors associated with simplified analysis methods. A possibility based design optimization framework is developed to utilize the newly proposed piecewise-linear fuzzy membership functions that compensate the discrepancies caused by simplified analysis. The proposed approach for aircraft design produces the optimum aircraft configurations that are less likely to fall into infeasible region when analyzed using higher fidelity analysis at later design stages.

  • PDF

A Basic Study on the Analysis of Construction Accident Statistics Data (건설안전사고 통계데이터 분석에 관한 기초연구)

  • Park, Hwan-Pyo;Han, Jae-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.122-123
    • /
    • 2018
  • Although the disaster rate of the industry as a whole is on a downward trend, the disaster rate of the construction industry is on an ongoing trend. Therefore, in this study, we analyzed safety accident statistical data of the construction site over the past three years. As a result of the analysis, the incidence of disasters at small construction sites was very high. And the proportion of disaster occurred for workers who worked in less than 6 months even roughly 92.6%. In addition, as a result of analyzing the form of disaster occurrence, the crash was 34.1% and the fall was 15.1%. The analysis results of these construction safety accidents are to provide as a basic material for developing a policy that can prevent safety accidents and a safety accident prediction model.

  • PDF

Analysis of Regional-Scale Weather Model Applicabilities for the Enforcement of Flood Risk Reduction (홍수피해 감소를 위한 지역규모 기상모델의 적용성 분석)

  • Jung, Yong;Baek, JongJin;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5B
    • /
    • pp.267-272
    • /
    • 2012
  • To reduce the flood risk caused by unexpected heavy rainfall, many prediction methods for flood have been developed. A major constituent of flood prediction is an accurate rainfall estimation which is an input of hydrologic models. In this study, a regional-scale weather model which can provide relatively longer lead time for flood mitigation compared to the Nowcasting based on radar system will be introduced and applied to the Chongmi river basin located in central part of South Korea. The duration of application of a regional weather model is from July 11 to July 23 in 2006. The estimated rainfall amounts were compared with observations from rain gauges (Sangkeuk, Samjook, and Sulsung). For this rainfall event at Chongmi river basin, Thomson and Kain-Frisch Schemes for microphysics and cumulus parameterization, respectively, were selected as optimal physical conditions to present rainfall fall amount in terms of Mean Absolute Relative Errors (MARE>0.45).

A Foundational Study on Deep Learning for Assessing Building Damage Due to Natural Disasters (자연재해로 인한 건물의 피해 평가를 위한 딥러닝 기초 연구)

  • Kim, Ji-Myong;Yun, Gyeong-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.363-370
    • /
    • 2024
  • The escalating frequency and intensity of natural disasters and extreme weather events due to climate change have caused increasingly severe damage to societal infrastructure and buildings. Government agencies and private companies are actively working to evaluate these damages, but existing technologies and methodologies often fall short of meeting the practical demands for accurate assessment and prediction. This study proposes a novel approach to assess building damage resulting from natural disasters, focusing on typhoons-one of the most devastating natural hazards experienced in the country. The methodology leverages deep learning algorithms to evaluate typhoon-related damage, providing a comprehensive framework for assessment. The framework and outcomes of this research can provide foundational data for the evaluation of natural disaster-induced damage over the entire life cycle of buildings and can be applied in various other industries and research areas for assessing risk of damage.

Case study on flood water level prediction accuracy of LSTM model according to condition of reference hydrological station combination (참조 수문관측소 구성 조건에 따른 LSTM 모형 홍수위예측 정확도 검토 사례 연구)

  • Lee, Seungho;Kim, Sooyoung;Jung, Jaewon;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.981-992
    • /
    • 2023
  • Due to recent global climate change, the scale of flood damage is increasing as rainfall is concentrated and its intensity increases. Rain on a scale that has not been observed in the past may fall, and long-term rainy seasons that have not been recorded may occur. These damages are also concentrated in ASEAN countries, and many people in ASEAN countries are affected, along with frequent occurrences of flooding due to typhoons and torrential rains. In particular, the Bandung region which is located in the Upper Chitarum River basin in Indonesia has topographical characteristics in the form of a basin, making it very vulnerable to flooding. Accordingly, through the Official Development Assistance (ODA), a flood forecasting and warning system was established for the Upper Citarium River basin in 2017 and is currently in operation. Nevertheless, the Upper Citarium River basin is still exposed to the risk of human and property damage in the event of a flood, so efforts to reduce damage through fast and accurate flood forecasting are continuously needed. Therefore, in this study an artificial intelligence-based river flood water level forecasting model for Dayeu Kolot as a target station was developed by using 10-minute hydrological data from 4 rainfall stations and 1 water level station. Using 10-minute hydrological observation data from 6 stations from January 2017 to January 2021, learning, verification, and testing were performed for lead time such as 0.5, 1, 2, 3, 4, 5 and 6 hour and LSTM was applied as an artificial intelligence algorithm. As a result of the study, good results were shown in model fit and error for all lead times, and as a result of reviewing the prediction accuracy according to the learning dataset conditions, it is expected to be used to build an efficient artificial intelligence-based model as it secures prediction accuracy similar to that of using all observation stations even when there are few reference stations.

Development of 3D Impulse Calculation Technique for Falling Down of Trees (수목 도복의 3D 충격량 산출 기법 개발)

  • Kim, Chae-Won;Kim, Choong-Sik
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • This study intended to develop a technique for quantitatively and 3-dimensionally predicting the potential failure zone and impulse that may occur when trees are fall down. The main outcomes of this study are as follows. First, this study established the potential failure zone and impulse calculation formula in order to quantitatively calculate the risks generated when trees are fallen down. When estimating the potential failure zone, the calculation was performed by magnifying the height of trees by 1.5 times, reflecting the likelihood of trees falling down and slipping. With regard to the slope of a tree, the range of 360° centered on the root collar was set in the case of trees that grow upright and the range of 180° from the inclined direction was set in the case of trees that grow inclined. The angular momentum was calculated by reflecting the rotational motion from the root collar when the trees fell down, and the impulse was calculated by converting it into the linear momentum. Second, the program to calculate a potential failure zone and impulse was developed using Rhino3D and Grasshopper. This study created the 3-dimensional models of the shapes for topography, buildings, and trees using the Rhino3D, thereby connecting them to Grasshopper to construct the spatial information. The algorithm was programmed using the calculation formula in the stage of risk calculation. This calculation considered the information on the trees' growth such as the height, inclination, and weight of trees and the surrounding environment including adjacent trees, damage targets, and analysis ranges. In the stage of risk inquiry, the calculation results were visualized into a three-dimensional model by summarizing them. For instance, the risk degrees were classified into various colors to efficiently determine the dangerous trees and dangerous areas.