• Title/Summary/Keyword: Fall direction detection algorithm

Search Result 7, Processing Time 0.017 seconds

Implementation of Fall Direction Detector using a Single Gyroscope (자이로센서를 이용한 낙상 방향 탐지 시스템 구현)

  • Moon, Byung-Hyun;Ryu, Jeong Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.2
    • /
    • pp.31-37
    • /
    • 2016
  • Falling situations are extremely critical events for the elderly person who requires timely and adequate emergency service. For the case of emergency, the information of falling and its direction can be used as an important information for the first aid treatment of the injured person. In this paper, a falling detection system which can pinpoint the falling event with the falling direction is implemented. In order to detect the fall situation, a single gyroscope (MPU-6050) is used in the developed system. The fall detection algorithm that can classify 8 different fall directions such as front, back, left, right and in between falls is proposed. The direction of the fall is decided by examining the acceleration values of X and Y directions of the sensor. It is shown that the proposed algorithm successfully detects the falling event and the falling direction with probability of 97% for a selected value of acceleration threshold.

Implementation of Falls Detection System Using 3-axial Accelerometer Sensor (3축 가속도 센서를 이용한 낙상 검출 시스템 구현)

  • Jeon, Ah-Young;Yoo, Ju-Yeon;Park, Geun-Chul;Jeon, Gye-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1564-1572
    • /
    • 2010
  • In this study, the falls detection and direction classification system was implemented using 3-axial acceleration signal. The acceleration signals were acquired from the 3-axial accelerometer(MMA7260Q, Freescale, USA), and then transmitted to the computer through USB interface. The implemented system can detect falls using the newly proposed algorithm, and also classify the direction of falls using fuzzy classifier. The 6 subjects was selected for experiment and the accelerometer was attached on each subject's chest. Each subject walked in normal pace for 5 seconds, and then the fall down according to the four direction(front_fall, back_fall, left_fall and right_fall) during at least 2 second. The falls was easily detect using the newly proposed algorithm in this study. The acquired signals were analyzed after 1 second from generating falls. The fuzzy classifier was used to classify the direction of falls. The mean value of the falls detection rate was 94.79%. The classifier rate according to falls direction were 95.83% in case of front falls, 100% incase of back falls, 87.5% in case of left falls, and 95.83% in case of right falls.

Motion Estimation-based Human Fall Detection for Visual Surveillance

  • Kim, Heegwang;Park, Jinho;Park, Hasil;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.327-330
    • /
    • 2016
  • Currently, the world's elderly population continues to grow at a dramatic rate. As the number of senior citizens increases, detection of someone falling has attracted increasing attention for visual surveillance systems. This paper presents a novel fall-detection algorithm using motion estimation and an integrated spatiotemporal energy map of the object region. The proposed method first extracts a human region using a background subtraction method. Next, we applied an optical flow algorithm to estimate motion vectors, and an energy map is generated by accumulating the detected human region for a certain period of time. We can then detect a fall using k-nearest neighbor (kNN) classification with the previously estimated motion information and energy map. The experimental results show that the proposed algorithm can effectively detect someone falling in any direction, including at an angle parallel to the camera's optical axis.

Development of fall Detection System by Estimating the Amount of Impact and the Status of Torso Posture of the Elderly (노인 낙상 후 충격량 측정 및 기립여부 판단 시스템 구현)

  • Kim, Choong-Hyun;Lee, Young-Jae;Lee, Pil-Jae;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1204-1208
    • /
    • 2011
  • In this study, we proposed the system that calculates the algorithm with an accelerometer signal and detects the fall shock and it's direction. In order to gather the activity patterns of fall status and attach on the subject's body without consciousness, the device needs to be small. With this aim, it is attached on the right side of subject's waist. With roll and pitch angle which represent the activity of upper body, the fall situation is determined and classified into the posture pattern. The impact is calculated by the vector magnitude of accelerometer signal. And in the case of the elderly keep the same posture after fall, it can distinguish the situation whether they can stand by themselves or not. Our experimental results showed that 95% successful detection rate of fall activity with 10 subjects. For further improvement of our system, it is necessary to include tasks-oriented classifying algorithm to diverse fall conditions.

Vest-type System on Machine Learning-based Algorithm to Detect and Predict Falls

  • Ho-Chul Kim;Ho-Seong Hwang;Kwon-Hee Lee;Min-Hee Kim
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.43-54
    • /
    • 2024
  • Purpose: Falls among persons older than 65 years are a significant concern due to their frequency and severity. This study aimed to develop a vest-type embedded artificial intelligence (AI) system capable of detecting and predicting falls in various scenarios. Methods: In this study, we established and developed a vest-type embedded AI system to judge and predict falls in various directions and situations. To train the AI, we collected data using acceleration and gyroscope values from a six-axis sensor attached to the seventh cervical and the second sacral vertebrae of the user, considering accurate motion analysis of the human body. The model was constructed using a neural network-based AI prediction algorithm to anticipate the direction of falls using the collected pedestrian data. Results: We focused on developing a lightweight and efficient fall prediction model for integration into an embedded AI algorithm system, ensuring real-time network optimization. Our results showed that the accuracy of fall occurrence and direction prediction using the trained fall prediction model was 89.0% and 78.8%, respectively. Furthermore, the fall occurrence and direction prediction accuracy of the model quantized for embedded porting was 87.0 % and 75.5 %, respectively. Conclusion: The developed fall detection and prediction system, designed as a vest-type with an embedded AI algorithm, offers the potential to provide real-time feedback to pedestrians in clinical settings and proactively prepare for accidents.

Emergency Detection System using PDA based on Self-response Algorithm

  • Jeon, Ah-Young;Park, Jun-Mo;Jeon, Gye-Rok;Ye, Soo-Young;Kim, Jae-Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.293-298
    • /
    • 2007
  • The aged are faced with increasing risk for falls. The aged have more fragile bones than others. When falls occur, it is important to detect this emergency state because such events often lead to more serious illness or even death. A implementation of PDA system, for detection of emergency situation, was developed using 3-axis accelerometer in this paper as follows. The signals were acquired from the 3-axis accelerometer, and then transmitted to the PDA through a Bluetooth module. This system can classify human activity, and also detect an emergency state like falls. When the fall occurs, the system generates the alarm on the PDA. If a subject does not respond to the alarm, the system determines whether the current situation is an emergency state or not, and then sends some information to the emergency center in the case of an urgent situation. Three different studies were conducted on 12 experimental subjects, with results indicating a good accuracy. The first study was performed to detect the posture change of human daily activity. The second study was performed to detect the correct direction of fall. The third study was conducted to check the classification of the daily physical activity. Each test lasted at least 1 min. in the third study. The output of the acceleration signal was compared and evaluated by changing various postures after attaching a 3-axis accelerometer module on the chest. The newly developed system has some important features such as portability, convenience and low cost. One of the main advantages of this system is that it is available at home healthcare environment. Another important feature lies in its low cost of manufacture. The implemented system can detect the fall accurately, so it will be widely used in emergency situations.

IMU-Barometric Sensor-based Vertical Velocity Estimation Algorithm for Drift-Error Minimization (드리프트 오차 최소화를 위한 관성-기압센서 기반의 수직속도 추정 알고리즘)

  • Ji, Sung-In;Lee, Jung Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.937-943
    • /
    • 2016
  • Vertical velocity is critical in many areas, such as the control of unmanned aerial vehicles, fall detection, and virtual reality. Conventionally, the integration of GPS (Global Positioning System) with an IMU (Inertial Measurement Unit) was popular for the estimation of vertical components. However, GPS cannot work well indoors and, more importantly, has low accuracy in the vertical direction. In order to overcome these issues, IMU-barometer integration has been suggested instead of IMU-GPS integration. This paper proposes a new complementary filter for the estimation of vertical velocity based on IMU-barometer integration. The proposed complementary filter is designed to minimize drift error in the estimated velocity by adding PID control in addition to a zero velocity update technique.