• Title/Summary/Keyword: Fall Prediction

Search Result 154, Processing Time 0.027 seconds

A Study on Equilibrium of $NH_4NO_{3(s, aq)}-HNO_{3(g)}-NH_{3(g)}$ in Urban Atmosphere (도시 대기중에서 $NH_4NO_{3(s, aq)}-HNO_{3(g)}-NH_{3(g)}$의 평형에 관한 연구(II))

  • 천만영;이영재;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.154-159
    • /
    • 1993
  • Theoretical prediction of the equilibrium of temperature and relative humidity dependance involving $HNO_{3(g)}-NH_{3(g)}$ and $NH_4NH_{3(s, aq)}$ was compared with atmospheric measurement of particulate nitrate$(NO_3^-)$, Ammonia-Nitric Acid partial pressure product $([$NH_{3(g)}][HNO_{3(g)}]ppb^2$) by a triple filter pack sampler from Oct 1991 to July 1992. The measured $HNO_3NH_3$ concentration product K was greater than equilibrium constant $K_p$ calculated from thermodynamic data of $NH_4NO_{3(s, aq)}-HNO_{3(g)}-NH_{3(g)}$ during fall, winter and spring. But K was lower than $K_p$ in summer. K was greater than $K_p$ as the result of supersaturation by air pollution, particularly anthropogenic $NH_3$.The reason of $K < K_p$ was due to removal of particulate nitrate$(NO_3^-)$ by rainout and washout. $NH_4NO_3$ which consists mainly of particulate nitrate is formed by reaction between $HNO_3$ and $NH_3$. As a result of the removal of particulate nitrate$(NO_3^-)$ by rainout and washout, concentrations of $HNO_3$ and $NH_3$ are decreased by equilibrium transfer(Le Chatelier's Law) in atmosphere.

  • PDF

A dynamic procedure for defection detection and prevention based on SOM and a Markov chain

  • Kim, Young-ae;Song, Hee-seok;Kim, Soung-hie
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.141-148
    • /
    • 2003
  • Customer retention is a common concern for many industries and a critical issue for the survival in today's greatly compressed marketplace. Current customer retention models only focus on detection of potential defectors based on the likelihood of defection by using demographic and customer profile information. In this paper, we propose a dynamic procedure for defection detection and prevention using past and current customer behavior by utilizing SOM and Markov chain. The basic idea originates from the observation that a customer has a tendency to change his behavior (i.e. trim-out his usage volumes) before his eventual withdrawal. This gradual pulling out process offers the company the opportunity to detect the defection signals. With this approach, we have two significant benefits compared with existing defection detection studies. First, our procedure can predict when the potential defectors could withdraw and this feature helps to give marketing managers ample lead-time for preparing defection prevention plans. The second benefit is that our approach can provide a procedure for not only defection detection but also defection prevention, which could suggest the desirable behavior state for the next period so as to lower the likelihood of defection. We applied our dynamic procedure for defection detection and prevention to the online gaming industry. Our suggested procedure could predict potential defectors without deterioration of prediction accuracy compared to that of the MLP neural network and DT.

  • PDF

Application of Deep Learning: A Review for Firefighting

  • Shaikh, Muhammad Khalid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.73-78
    • /
    • 2022
  • The aim of this paper is to investigate the prevalence of Deep Learning in the literature on Fire & Rescue Service. It is found that deep learning techniques are only beginning to benefit the firefighters. The popular areas where deep learning techniques are making an impact are situational awareness, decision making, mental stress, injuries, well-being of the firefighter such as his sudden fall, inability to move and breathlessness, path planning by the firefighters while getting to an fire scene, wayfinding, tracking firefighters, firefighter physical fitness, employment, prediction of firefighter intervention, firefighter operations such as object recognition in smoky areas, firefighter efficacy, smart firefighting using edge computing, firefighting in teams, and firefighter clothing and safety. The techniques that were found applied in firefighting were Deep learning, Traditional K-Means clustering with engineered time and frequency domain features, Convolutional autoencoders, Long Short-Term Memory (LSTM), Deep Neural Networks, Simulation, VR, ANN, Deep Q Learning, Deep learning based on conditional generative adversarial networks, Decision Trees, Kalman Filters, Computational models, Partial Least Squares, Logistic Regression, Random Forest, Edge computing, C5 Decision Tree, Restricted Boltzmann Machine, Reinforcement Learning, and Recurrent LSTM. The literature review is centered on Firefighters/firemen not involved in wildland fires. The focus was also not on the fire itself. It must also be noted that several deep learning techniques such as CNN were mostly used in fire behavior, fire imaging and identification as well. Those papers that deal with fire behavior were also not part of this literature review.

A Study on Predicting the demand for Public Shared Bikes using linear Regression

  • HAN, Dong Hun;JUNG, Sang Woo
    • Korean Journal of Artificial Intelligence
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • As the need for eco-friendly transportation increases due to the deepening climate crisis, many local governments in Korea are introducing shared bicycles. Due to anxiety about public transportation after COVID-19, bicycles have firmly established themselves as the axis of daily transportation. The use of shared bicycles is spread, and the demand for bicycles is increasing by rental offices, but there are operational and management difficulties because the demand is managed under a limited budget. And unfortunately, user behavior results in a spatial imbalance of the bike inventory over time. So, in order to easily operate the maintenance of shared bicycles in Seoul, bicycles should be prepared in large quantities at a time of high demand and withdrawn at a low time. Therefore, in this study, by using machine learning, the linear regression algorithm and MS Azure ML are used to predict and analyze when demand is high. As a result of the analysis, the demand for bicycles in 2018 is on the rise compared to 2017, and the demand is lower in winter than in spring, summer, and fall. It can be judged that this linear regression-based prediction can reduce maintenance and management costs in a shared society and increase user convenience. In a further study, we will focus on shared bike routes by using GPS tracking systems. Through the data found, the route used by most people will be analyzed to derive the optimal route when installing a bicycle-only road.

A Study on Impact Point Prediction of a Reentry Vehicle using Integrated Track Splitting Filters in a Cluttered Environment (클러터가 존재하는 환경에서의 ITS 필터를 이용한 재진입 발사체의 낙하지점 추정 기법 연구)

  • Moon, Kyung-Rok;Kim, Tae-Han;Song, Taek-Lyul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.23-34
    • /
    • 2012
  • Space launch vehicles are designed to fly according to the elaborate pre-determined path. However, if a vehicle went out of the planned trajectory or its thrust terminated abnormally, or if a free-fall atmospheric reentry vehicle tracked by a tracking sensor became impossible to be measured, it is required to attempt to track by a another track equipment or estimate its impact point rapidly. In this paper a new algorithm is proposed, named the ITS-EKF combined with the Integrated Track Splitting (ITS) algorithm and the Extended Kalman Filter (EKF) to obtain the location information of a ballistic projectile without thrust, create its track and maintain it in an environment with clutter. For the reentry vehicle, the track performance is to be verified and the impact point is estimated by applying the simulation through ITS-EKF algorithm. To ensure the proposed algorithm's adequacy, by comparing the track performance and impact point distribution by the ITS-EKF with those of ITS-PF combined with ITS and Particle Filter (PF), it is confirmed that the ITS-EKF algorithm can be used an effective real-time On-line impact point prediction.

Comparison of MODIS Land Surface Temperature and Inland Water Temperature (내륙 수온과 MODIS 지표 온도 데이터의 비교 평가)

  • Na, Yu-Gyung;Kim, Juwon;Lim, Eunha;Park, Woo Jung;Kim, Min Jun;Choi, Jinmu
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.2
    • /
    • pp.352-361
    • /
    • 2013
  • This paper aims to analyze the root mean square errors of MODIS LST data and inland water temperature measurement data in order to use MODIS LST data as an input of numerical weather prediction model. MODIS LST data from July 2011 to June 2012 were compared to water temperature measurement data in the automated water quality measurement network. MODIS data have two composites: day-time and night-time. Monthly errors of day-time and night-time LST range $2{\sim}8^{\circ}C$ and $3{\sim}12^{\circ}C$, respectively. Temporally, monthly errors of day-time LST are less in fall and those of night-time LST are less in summer. Spatially, on the four major rivers including the Han, Nakdong, Geum, and Yeongsan rivers, the errors of Yeongsan river were the smallest, which location is the south-most among them. In this study, the errors of MODIS LST as an input of numerical weather prediction model were analyzed and the results can be used as an error level of MODIS LST data for inaccessible areas such as North Korea.

  • PDF

A Study on Characteristics and Predictions of Seasonal Chlorophyll-a using Bayseian Regression in Paldang Watershed (베이지안 추정을 이용한 팔당호 유역의 계절별 클로로필a 예측 및 오염특성 연구)

  • Kim, Mi-Ah;Shin, Yuna;Kim, Kyunghyun;Heo, Tae-Young;Yoo, Moonkyu;Lee, Su-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.832-841
    • /
    • 2013
  • In recent years, eutrophication in the Paldang Lake has become one of the major environmental problems in Korea as it may threaten drinking water safety and human health. Thus it is important to understand the phenomena and predict the time and magnitude of algal blooms for applying adequate algal reduction measures. This study performed seasonal water quality assessment and chlorophyll-a prediction using Bayseian simple/multiple linear regression analysis. Bayseian regression analysis could be a useful tool to overcome limitations of conventional regression analysis. Also it can consider uncertainty in prediction by using posterior distribution. Generally, chlorophyll-a of a P2(Paldang Dam 2) site showed high concentration in spring and it was similar to that of P4(Paldang Dam 4) site. For the development of Bayseian model, we performed seasonal correlation. As a result, chlorophyll-a of a P2 site had a high correlation with P5(Paldang Dam 5) site in spring (r = 0.786, p<0.05) and with P4 in winter (r = 0.843, p<0.05). Based on the DIC (Deviance Information Criterion) value, critical explanatory variables of the best fitting Bayesian linear regression model were selected as a $PO_4-P$ (P2), Chlorophyll-a (P5) in spring, $NH_3-N$ (P2), Chlorophyll-a (P4), $NH_3-N$ (P4) in summer, DTP (P2), outflow (P2), TP (P3), TP (P4) fall, COD (P2), Chl-a (P4) and COD (P4) in winter. The results of chlorophyll-a prediction showed relatively high $R^2$ and low RMSE values in summer and winter.

Analysis of the Ripple Effect of COVID-19 on Art Auction Using Artificial Neural Network (인공신경망 모형을 활용한 미술품 경매에 대한 COVID-19의 파급효과 분석)

  • Lee, Ji In;Song, Jeong Seok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.533-543
    • /
    • 2023
  • This study explores the influence of the COVID-19 pandemic on the Korean art market and contrasts the classic hedonic method of art price prediction with the Artificial Neural Network technique. The empirical analysis of this paper utilizes 14,639 observations of Korean art auction data from 2015 to 2021. There are three types of variables in this study: artist-related, artwork-related, and sales-related. Previous studies have suggested that these three types of variables influence art prices. The empirical findings in this research are in twofold. First, in terms of RMSE and R2, the Artificial Neural Network outperforms the hedonic model. Both techniques discover that sales and artwork variables have a greater impact than artist-related attributes. Second, when the primary factors of art price are controlled, Korean art prices are found to fall dramatically in 2020, shortly following the onset of COVID-19, but to rebound in 2021. The main lesson in this study is that the Artificial Neural Network enhances art price prediction and reduces information asymmetry in the Korean art market even in the face of unanticipated turmoil such as the COVID-19 outbreak.

The Relationship between Unsafe Acts and Fall Accident of Workers Using ETA (ETA를 활용한 근로자의 불안전한 행동과 떨어짐 사고의 관계)

  • Jeong, Eunbeen;Choi, Jaewook;Lee, Chansik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.3
    • /
    • pp.28-38
    • /
    • 2020
  • The large-scaled and high-rise construction structures in recent years have increased high place work, leading to an increase in falling accidents (hereinafter, "accidents"). The need for prediction and management of unsafe acts of workers at construction sites has been raised as unsafe acts of workers are identified as the main cause of industrial accidents. This research aims at deriving the improvement effect of unsafe acts by presenting the relationship between unsafe acts of workers and accidents at construction sites as a probability. Unsafe acts of workers were derived based on the analysis of accident cases. In addition, surveys were conducted to calculate the probability of occurrence of accidents caused by unsafe acts (hereinafter, 'accident probability'). The Event Tree Analysis (ETA) was utilized to confirm the final probability according to the combination of unsafe acts and improvement effect. The accident probability by unsafe act was found to be the highest for working after drinking (95.41%) and to be the lowest for equipment and machine utilization (65.70%). The accident probability according to a combination of unsafe acts was the highest when all of the unsafe acts were conducted (13.23%) and was the lowest when none of the unsafe acts were conducted (0.00%).

Prediction of Soil Moisture using Hydrometeorological Data in Selmacheon (수문기상자료를 이용한 설마천의 토양수분 예측)

  • Joo, Je Young;Choi, Minha;Jung, Sung Won;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.437-444
    • /
    • 2010
  • Soil moisture has been recognized as the essential parameter when understanding the complicated relationship between land surface and atmosphere in water and energy recycling system. It has been generally known that it is related with the temperature, wind, evaporation dependent on soil properties, transpiration due to vegetations and other constituents. There is, however, little research concerned about the relationship between soil moisture and these constitutes, thus it is needed to investigate it in detail. We estimated the soil moisture and then compared with field data using the hydrometerological data such as atmospheric temperature, specific humidity, and wind obtained from the Flux tower in Selmacheon, Korea. In the winter season, subterranean temperature showed highly positive correlation with soil moisture while it was negatively correlated from the spring to the fall. Estimation of seasonal soil moisture was compared with field measurements with the correlation of determination, R=0.82, 0.81, 0.82, and 0.96 for spring, summer, fall, and winter, respectively. Comprehensive relationship from this study can supply useful information about the downscaling of soil moisture with relatively large spatial resolutions, and will help to deepen the understanding of the water and energy recycling on the earth's surface.