• Title/Summary/Keyword: Fair scheduling

Search Result 137, Processing Time 0.02 seconds

PD-DESYNC: Practical and Deterministic Desynchronization in Wireless Sensor Networks

  • Hyun, Sang-Hyun;Kim, Geon;Yang, Dongmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3880-3899
    • /
    • 2019
  • Distributive desynchronization algorithms based on pulse-coupled oscillator (PCO) models have been proposed for achieving collision-free wireless transmissions. These algorithms do not depend on a global clock or infrastructure overheads. Moreover, they gradually converge to fair time-division multiple access (TDMA) scheduling by broadcasting a periodic pulse signal (called a 'firing') and adjusting the next firing time based on firings from other nodes. The time required to achieve constant spacing between phase neighbors is estimated in a closed form or via stochastic modeling. However, because these algorithms cannot guarantee the completion of desynchronization in a short and bounded timeframe, they are not practical. Motivated by the limitations of these methods, we propose a practical solution called PD-DESYNC that provides a short and deterministic convergence time using a flag firing to indicate the beginning of a cycle. We demonstrate that the proposed method guarantees the completion of desynchronization within three cycles, regardless of the number of nodes. Through extensive simulations and experiments, we confirm that PD-DESYNC not only outperforms other algorithms in terms of convergence time but also is a practical solution.

Guaranteeing delay bounds based on the Bandwidth Allocation Scheme (패킷 지연 한계 보장을 위한 공평 큐잉 기반 대역할당 알고리즘)

  • 정대인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8A
    • /
    • pp.1134-1143
    • /
    • 2000
  • We propose a scheduling algorithm, Bandwidth Allocation Scheme (BAS), that guarantees bounded delay in a switching node. It is based on the notion of the GPS (Generalized Processor Sharing) mechanism, which has clarified the concept of fair queueing with a fluid-flow hypothesis of traffic modeling. The main objective of this paper is to determine the session-level weights that define the GPS sewer. The way of introducing and derivation of the so-called system equation' implies the approach we take. With multiple classes of traffic, we define a set of service curves:one for each class. Constrained to the required profiles of individual service curves for delay satisfaction, the sets of weights are determined as a function of both the delay requirements and the traffic parameters. The schedulability test conditions, which are necessary to implement the call admission control, are also derived to ensure the proposed bandwidth allocation scheme' be able to support delay guarantees for all accepted classes of traffic. It is noticeable that the values of weights are tunable rather than fixed in accordance with the varying system status. This feature of adaptability is beneficial towards the enhanced efficiency of bandwidth sharing.

  • PDF

A Resource Reservation Protocol and Packet Scheduling for Qos Provisioning in Hose-based VPNs (Hose 기반 VPN에서의 서비스품질 제공을 위한 자원예약 프로토콜과 패킷 스케줄링 기법)

  • Byun Hae-Sun;Woo Hyun-Je;Kim Kyoung-Min;Lee Mee-Jeong
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.3
    • /
    • pp.247-256
    • /
    • 2006
  • Among the resource provisioning mechanisms for the hose based Virtual Private Network (VPN) Quality of Service (QoS ), VPN-specific state provisioning allows the service provider to obtain highest resource multiplexing gains. However, dynamic and automatic resource reservation for the VPN-specific state provisioning is difficult due to the lack of appropriate resource reservation protocol. Furthermore, users of a VPN may experience unfair usage of resources among themselves since the reserved resources of a VPN are shared by the VPN users in a similar way that the traditional LAN bandwidth is shared by the attached hosts. In this paper, we propose a resource reservation protocol and a traffic service mechanism, which not only enable dynamic and automatic resource reservation according to the VPN-specific state provisioning algorithm, but also enforce the fair usage of reserved resources among the users of a VPN in case of congestion.

Capacity Evaluation of VoIP Service over HSDPA with Frame-Bundling (HSDPA 시스템에서 Frame-Bundling을 채용한 VoIP 서비스 용량 평가)

  • Hwang, Jong-Yoon;Kim, Yong-Seok;Whang, Keum-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3B
    • /
    • pp.161-167
    • /
    • 2007
  • In this paper, we evaluate the capacity of voice over internet protocol (VoIP) services over high-speed downlink packet access (HSDPA), in which frame-bundling (FB) is incorporated to reduce the effect of relatively large headers in the IP/UDP/RTP layers. Also, a modified proportional pair (PF) packet scheduler design supporting for VoIP service is provided. The main focus of this work is the effect of FB on system outage based on delay budget in radio access networks. Simulation results show that VoIP system performance with FB scheme is highly sensitive to delay budget. We also conclude that HSDPA is attractive for transmission of VoIP if compared to the circuit switched (CS) voice that is used in WCDMA (Release'99).

Interference Aware Cost Effective Coverage Extension in Multihop Relay Networks (다중홉 릴레이 시스템에서 간섭의 영향과 비용의 효과를 고려한 셀 커버리지 확장 방법에 관한 연구)

  • Kim, Yongchul;Lim, Won-Taek;Cho, Sung-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.12
    • /
    • pp.1138-1147
    • /
    • 2012
  • IEEE standard 802.16, often referred to as WiMAX, is considered a "last mile" broadband wireless access alternative to conventional DSL and Cable Internet. One extension that is recently receiving great attention is the IEEE 802.16j Mobile Multihop Relay (MMR) amendment. The focus of this amendment is the development of simple and lower cost relay stations (RSs) that can enhance network coverage and capacity. We use our proposed simple scheduling scheme for serving the SSs in a fair manner and evaluate the performance of WiMAX networks with relays, especially we analyze the impact of interference between RSs on cell throughput Through simulations and numerical analysis, we make several fundamental observations about interference aware cost effective coverage extension in such networks.

Study on a Neural UPC by a Multiplexer Information in ATM (ATM 망에서 다중화기 정보에 의한 Neural UPC에 관한 연구)

  • Kim, Young-Chul;Pyun, Jae-Young;Seo, Hyun-Seung
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.7
    • /
    • pp.36-45
    • /
    • 1999
  • In order to control the flow of traffics in ATM networks and optimize the usage of network resources, an efficient control mechanism is necessary to cope with congestion and prevent the degradation of network performance caused by congestion. In this paper, Buffered Leaky Bucket which applies the same control scheme to a variety of traffics requiring the different QoS(Quality of Service) and Neural Networks lead to the effective buffer utilization and QoS enhancement in aspects of cell loss rate and mean transfer delay. And the cell scheduling algorithms such as DWRR and DWEDF for multiplexing the incoming traffics are enhanced to get the better fair delay. The network congestion information from cell scheduler is used to control the predicted traffic loss rate of Neural Leaky Bucket, and token generation rate and buffer threshold are changed by the predicted values. The prediction of traffic loss rate by neural networks can enhance efficiency in controlling the cell loss rate and cell transfer delay of next incoming cells and also be applied for other traffic controlling schemes. Computer simulation results performed for random cell generation and traffic prediction show that QoSs of the various kinds of traffcis are increased.

  • PDF

Performance Evaluation of Inter-Sector Collaborative PF Schedulers for Multi-User MIMO Transmission Using Zero Forcing (영점 강제 다중 사용자 MIMO 전송 시 셀 간 정보 교환을 활용한 협력적 PF 스케줄러의 성능 평가)

  • Lee, Ji-Won;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • Multi-user MIMO (Multiple-Input Multiple-Output) systems require collaborative PF schedulers to improve the performance of the log sum of average transmission rates. While the performance of single cell based conventional PF schedulers has been evaluated over various channel conditions, scheduling algorithms by multiple base stations which select multiple users over a given time frame and their performance require further investigations. In this paper, we apply a collaborative PF scheduler to the distributed multi-user MIMO system, which assigns radio resources to multiple users by exchanging user channel information from base stations located in three adjacent sectors. We further evaluate its performance in terms of the log sum of average transmission rates. The performance is compared to that of the full-search collaborative PF scheduler which searches over all possible combinations of user groups, and that of a parallel PF scheduler that determines users without channel information exchange among base stations. We show the log sum of average transmission rates of the collaborative PF scheduler outperforms that of the parallel PF scheduler in low percentile region. In addition, the collaborative PF scheduler exhibits a negligible performance degradation when compared to the full-search collaborative PF scheduler while a significant reduction of the computational complexity is achievable at the same time.