• Title/Summary/Keyword: Failure-interval-failure-criterion model

Search Result 5, Processing Time 0.018 seconds

Warranty cost anlaysis for multi-component systems with imperfect repair

  • Park, Minjae
    • International Journal of Reliability and Applications
    • /
    • v.15 no.1
    • /
    • pp.51-64
    • /
    • 2014
  • This paper develops a warranty cost model for complex systems with imperfect repair within a warranty period by addressing a practical case that the first inter-failure interval is longer than any other inter-failure intervals. The product is in its best condition before the first failure if repair is imperfect. After the imperfect repair, other inter-failure intervals which are explained by renewal processes, are stochastically smaller than the first inter-failure interval. Based on this idea, we suggest the failure-interval-failure-criterion model. In this model, we consider two random variables, X and Y where X represents failure intervals and Y represents failure criterion. We also obtain the distribution of the number of failures and conduct the warranty cost analysis. We investigate different types of warranty cost models, reliabilities and other measures for various systems including series-parallel configurations. Several numerical examples are discussed to demonstrate the applicability of the methodologies derived in the paper.

  • PDF

A Segmented Model with Upside-Down Bathtub Shaped Failure Intensity (Upside-Down 욕조 곡선 형태의 고장 강도를 가지는 세분화 모형)

  • Park, Woo-Jae;Kim, Sang-Boo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1103-1110
    • /
    • 2020
  • In this study, a segmented model with Upside-Down bathtub shaped failure intensity for a repairable system are proposed under the assumption that the occurrences of the failures of a repairable system follow the Non-Homogeneous Poisson Process. The proposed segmented model is the compound model of S-PLP and LIP (Segmented Power Law Process and Logistic Intensity Process), that fits the separate failure intensity functions on each segment of time interval. The maximum likelihood estimation is used for estimating the parameters of the S-PLP and LIP model. The case study of system A shows that the S-PLP and LIP model fits better than the other models when compared by AICc (Akaike Information Criterion corrected) and MSE (Mean Squared Error). And it also implies that the S-PLP and LIP model can be useful for explaining the failure intensities of similar systems.

An Experimental Study on the Stabilizing Effect of Piles against Sliding (사면에 설치된 억지말뚝의 활동억지효과에 대한 실험적 연구)

  • Hong Won-Pyo;Song Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.69-80
    • /
    • 2005
  • In order to investigate the stabilizing effect of piles against sliding, a series of model tests were carried out. The model apparatus was designed to perform the model test of slope reinforced by stabilizing piles. The instrumentation system was used to measure the deflection of stabilizing piles during slope failure. The stabilizing effect of the piles in a row with some interval ratio is larger than the isolated pile without interval ratio. Because the prevention force of piles in a row increased due to the soil arching effect between piles during slope failure. Especially, the maximum value of prevention ratio was presented at 0.5 of interval ratio. If the required prevention ratio is 1.1, the interval ratio must be installed from 0.5 to 0.8. Also, the stabilizing effect of piles against sliding is excellent at the interval ratio between 0.5 and 0.8. This value can be proposed as the criterion of the interval ratio between piles against slope failure.

Comments on : An Expected Loss Model for FMEA under Periodic Monitoring of Failure Causes (FMEA에서 주기적인 고장원인 감시하의 기대손실모형에 대한 소고)

  • Yun, Won Young;Kwon, Hyuck-Moo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.3
    • /
    • pp.321-324
    • /
    • 2014
  • Kwon et al. (2013) studied the optimal monitoring interval of systems with finite life cycle. It is assumed that there are several failure modes from several failure causes and the occurrence of causes follows a homogeneous Poisson process. The total expected cost is used as an optimization criterion. In this article, we derive newly the total expected cost under the same assumptions and consider some extended models.

A New Quantification Method of Rock Joint Roughness (I) - A Close Assessment of Problems (암석 절리면 거칠기의 정량화에 대한 연구 (I) - 문제점의 규명)

  • Hong, Eun-Soo;Nam, Seok-Woo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.269-283
    • /
    • 2005
  • To figure out the cause of underestimating the roughness and shear strength of rock joints suggested by numerous researchers, we analyzed roughness mobilization characteristics, characteristics of roughness parameters, effects of sampling interval, and waviness for roughness parameters. It was found out that lack of understanding of the roughness mobilization characteristics, inappropriate applications of roughness parameters, and effect of aliasing provide a main reasons for those problems. Several practical alternatives for improving those problems were suggested. As far as digitizing methods are concerned, we can find that using a 3D scanner can give a relatively effective result. To avoid aliasing, sampling interval should be less than one-quarter of the minimum asperities. As for the quantification of roughness, it was analyzed that the roughness parameter should be classified into two components depending on the scale of roughness to apply the shear strength model. For classifying the roughness, a framework of the criterion was suggested based on the plastic flow concept for the asperity failure, and the basis for proposing a new alternative shear strength model was established.

  • PDF