• Title/Summary/Keyword: Failure ratio

Search Result 2,023, Processing Time 0.026 seconds

Post buckling mechanics and strength of cold-formed steel columns exhibiting Local-Distortional interaction mode failure

  • Muthuraj, Hareesh;Sekar, S.K.;Mahendran, Mahen;Deepak, O.P.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.621-640
    • /
    • 2017
  • This paper reports the numerical investigation conducted to study the influence of Local-Distortional (L-D) interaction mode buckling on post buckling strength erosion in fixed ended lipped channel cold formed steel columns. This investigation comprises of 81 column sections with various geometries and yield stresses that are carefully chosen to cover wide range of strength related parametric ratios like (i) distortional to local critical buckling stress ratio ($0.91{\leq}F_{CRD}/F_{CRL}{\leq}4.05$) (ii) non dimensional local slenderness ratio ($0.88{\leq}{\lambda}_L{\leq}3.54$) (iii) non-dimensional distortional slenderness ratio ($0.68{\leq}{\lambda}_D{\leq}3.23$) and (iv) yield to non-critical buckling stress ratio (0.45 to 10.4). The numerical investigation is carried out by conducting linear and non-linear shell finite element analysis (SFEA) using ABAQUS software. The non-linear SFEA includes both geometry and material non-linearity. The numerical results obtained are deeply analysed to understand the post buckling mechanics, failure modes and ultimate strength that are influenced by L-D interaction with respect to strength related parametric ratios. The ultimate strength data obtained from numerical analysis are compared with (i) the experimental tests data concerning L-D interaction mode buckling reported by other researchers (ii) column strength predicted by Direct Strength Method (DSM) column strength curves for local and distortional buckling specified in AISI S-100 (iii) strength predicted by available DSM based approaches that includes L-D interaction mode failure. The role of flange width to web depth ratio on post buckling strength erosion is reported. Then the paper concludes with merits and limitations of codified DSM and available DSM based approaches on accurate failure strength prediction.

Compressive performance of RAC filled GFRP tube-profile steel composite columns under axial loads

  • Ma, Hui;Bai, Hengyu;Zhao, Yanli;Liu, Yunhe;Zhang, Peng
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.335-349
    • /
    • 2019
  • To investigate the axial compressive performance of the recycled aggregate concrete (RAC) filled glass fiber reinforced polymer (GFRP) tube and profile steel composite columns, static loading tests were carried out on 18 specimens under axial loads in this study, including 7 RAC filled GFRP tube columns and 11 RAC filled GFRP tube-profile steel composite columns. The design parameters include recycled coarse aggregate (RCA) replacement percentage, profile steel ratio, slenderness ratio and RAC strength. The failure process, failure modes, axial stress-strain curves, strain development and axial bearing capacity of all specimens were mainly analyzed in detail. The experimental results show that the GFRP tube had strong restraint ability to RAC material and the profile steel could improve the axial compressive performance of the columns. The failure modes of the columns can be summarized as follow: the profile steel in the composite columns yielded first, then the internal RAC material was crushed, and finally the fiberglass of the external GFRP tube was seriously torn, resulting in the final failure of columns. The axial bearing capacity of the columns decreased with the increase of RCA replacement percentage and the maximum decreasing amplitude was 11.10%. In addition, the slenderness ratio had an adverse effect on the axial bearing capacity of the columns. However, the strength of the RAC material could effectively improve the axial bearing capacity of the columns, but their deformability decreased. In addition, the increasing profile steel ratio contributed to the axial compressive capacity of the composite columns. Based on the above analysis, a formula for calculating the bearing capacity of composite columns under axial compression load is proposed, and the adverse effects of slenderness ratio and RCA replacement percentage are considered.

Experimental study of strength characteristics of reinforced broken rock mass

  • Yanxu Guo;Qingsong Zhang;Hongbo Wang;Rentai Liu;Xin Chen;Wenxin Li;Lihai Zhang
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.553-565
    • /
    • 2023
  • As the structure of broken rock mass is complex, with obvious discontinuity and anisotropy, it is generally necessary to reinforce broken rock mass using grouting in underground construction. The purpose of this study is to experimentally investigate the mechanical properties of broken rock mass after grouting reinforcement with consideration of the characteristics of broken rock mass (i.e., degree of fragmentation and shape) and a range of reinforcement methods such as relative strength ratio between the broken rock mass and cement-based grout stone body (λ), and volumetric block proportion (VBP) representing the volumetric ratio of broken rock mass and the overall cement grout-broken rock mass mixture after the reinforcement. The experimental results show that the strength and deformation of the reinforced broken rock mass is largely determined by relative strength ratio (λ) and VBP. In addition, the enhancement in compressive strength by grouting is more obvious for broken rock mass with spherical shape under a relatively high strength ratio (e.g., λ=2.0), whereas the shape of rock mass has little influence when the strength ratio is low (e.g., λ=0.1). Importantly, the results indicate that columnar splitting failure and inclined shear failure are two typical failure modes of broken rock mass with grouting reinforcement.

Debonding failure analysis of prestressed FRP strengthened RC beams

  • Hoque, Nusrat;Jumaat, Mohd Z.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.543-555
    • /
    • 2018
  • Fiber Reinforced Polymer (FRP), which has a high strength to weight ratio, are now regularly used for strengthening of deficient reinforced concrete (RC) structures. While various researches have been conducted on FRP strengthening, an area that still requires attention is predicting the debonding failure load of prestressed FRP strengthened RC beams. Application of prestressing increases the capacity and reduces the premature failure of the beams largely, though not entirely. Few analytical methods are available to predict the failure loads under flexure failure. With this paucity, this research proposes a method for predicting debonding failure induced by intermediate crack (IC) for prestressed FRP-strengthened beams. The method consists of a numerical study on beams retrofitted with prestressed FRP in the tension side of the beam. The method applies modified Branson moment-curvature analysis together with the global energy balance approach in combination with fracture mechanics criteria to predict failure load for complicated IC-induced failure. The numerically simulated results were compared with published experimental data and the average of theoretical to experimental debonding failure load is found to be 0.93 with a standard deviation of 0.09.

Postbuckling response and failure of symmetric laminated plates with rectangular cutouts under uniaxial compression

  • Singh, S.B.;Kumar, Dinesh
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.455-467
    • /
    • 2008
  • This paper deals with the buckling and postbuckling responses and the progressive failure of square symmetric laminates with rectangular cutouts under uniaxial compression. A detailed investigation is made to show the effects of cutout size and cutout aspect ratio on prebuckling and postbuckling responses, failure loads and failure characteristics of $(+45/-45/0/90)_{2s}$, $(+45/-45)_{4s}$ and $(0/90)_{4s}$ laminates. The 3-D Tsai-Hill criterion is used to predict the failure of a lamina while the onset of delamination is predicted by the interlaminar failure criterion. In addition, the effects of boundary conditions on buckling load, failure loads, failure modes and maximum transverse deflection for a $(+45/-45/0/90)_{2s}$ laminate with and without cutout have also been presented. It is concluded that square laminates with small square cutouts have more postbuckling strength than without cutout, irrespective of boundary conditions.

Experimental study on the Behavior of RC Bridge Piers with Various Aspect Ratio (철근 콘크리트 교각의 형상비에 따른 거동 특성에 관한 실험적 연구)

  • Lee, Dae-Hyoung;Kim, Hoon;Kim, Yon-Gon;Chung, Young-Soo;Lee, Jae-Hoon;Cho, Jun-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.47-52
    • /
    • 2001
  • Short reinforced concrete bridge piers are particularly susceptible to shear failure as a consequence of the high shear/moment ratio and conservatism in the flexural strength design of existing RC bridge pier, which were constructed before 1992. In addition, shear failure is brittle and involves rapid strength degradation. Inelastic shear deformation is thus unsuitable fur ductile seismic response. It is, however, believed that there are not many experimental research works fur shear failure of the existing RC bridge pier in Korean peninsula subjected to earthquake motions. The object of this research is to evaluate the seismic performance of existing circular RC bridge piers by the quasi-static test. Existing RC bridge piers were moderate seismically designed in accordance with the conventional provisions of Korea Highway Design Specification. This study has been performed to verify the effect of aspect ratio (column height-diameter ratio). Quasi-static test has been done to investigate the physical seismic performance of RC bridge piers, such as lateral force-displacement hysteric curve, envelope curve etc.

  • PDF

Optimal design of an Wire-woven Bulk Kagome using taguchi method (다구찌법을 이용한 WBK(Wire-woven Bulk Kagome)의 최적설계)

  • Choi, Ji-Eun;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.13-19
    • /
    • 2008
  • A Wire-woven Bulk Kagome (WBK) is the new truss type cellular metal fabricated by assembling the helical wires in six directions. The WBK seems to be promising with respect to morphology, fabrication cost, and raw materials. In this paper, first, the geometric and material properties are defined as the main design parameters of the WBK considering the fact that the failure of WBK is caused by buckling of truss elements. Taguchi approach was used as statistical design of experiment(DOE) technique for optimizing the design parameters in terms of maximizing the compressive strength. Normalized specific strength is constant regardless of slenderness ratio even if material properties changed, while it increases gradually as the strainhardening coefficient decreases. Compressive strength of WBK dominantly depends on the slenderness ratio rather than one of the wire diameter, the strut length. Specifically the failure of WBK under compression by elastic buckling of struts mainly depended on the slenderness ratio and elastic modulus. However the failure of WBK by plastic failed marginally depended on the slenderness ratio, yield stress, hardening and filler metal area.

  • PDF

Seismic performance of the concrete-encased CFST column to RC beam joints: Analytical study

  • Ma, Dan-Yang;Han, Lin-Hai;Zhao, Xiao-Ling;Yang, Wei-Biao
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.533-551
    • /
    • 2020
  • A finite element analysis (FEA) model is established to investigate the concrete-encased concrete-filled steel tubular (CFST) column to reinforced concrete (RC) beam joints under cyclic loading. The feasibility of the FEA model is verified by a set of test results, consisting of the failure modes, the exposed view of connections, the crack distributions and development, and the hysteretic relationships. The full-range analysis is conducted to investigate the stress and strain development process in the composite joint by using this FEA model. The internal force distributions of different components, as well as the deformation distributions, are analyzed under different failure modes. The proposed connections are investigated under dimensional and material parameters, and the proper constructional details of the connections are recommended. Parameters of the beam-column joints, including material strength, confinement factor, reinforcement ratio, diameter of steel tube to sectional width ratio, beam to column linear bending stiffness ratio and beam shear span ratio are evaluated. Furthermore, the key parameters affecting the failure modes and the corresponding parameters ranges are proposed in this paper.

An Experimental Study on Piping Failure of Earth Embankment (토질제체의 Piping 파괴에 대한 실험적 연구)

  • Jeong, Hyeong-Sik;Ryu, Jae-Il;An, Sang-Ro
    • Geotechnical Engineering
    • /
    • v.5 no.4
    • /
    • pp.17-26
    • /
    • 1989
  • The creep ratio, which has been applied as a measure to prevent piping failure in designing embankments, has been originally proposed for the protection of masonry or concrete dam from piping along the boundary surface between the foundation soil and the bottom of the structure. In this study, it has been investigated whether this creep ratio could be applied for the earth embankment through the model test and we reevaluated the required creep ratio in the present design criteria. Based on this research, it was concluded that a piping failure would always occur within the embankment body and not through the boundary surface between the embankment and foundation. Therefore it could be said that the present design criteria are illogical to determine the design creep ratio according to less permeable soil no matter whether the soil forms embankment or foundation.

  • PDF

Study on the Undrained Shear Strength Characteristics (반월지역 해성점토의 비배수 전단강도 특성에 관한 연구)

  • 장병욱;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.90-99
    • /
    • 1994
  • To investigate the undrained shear strength characteristics of marine soils with high water content, high compressibility and weak bearing capacity, a series of undrained triaxial tests with pore pressure measurements on undisturbed and disturbed Banwol marine clay in normally consolidated and overconsolidated states is carried out. The results and main conclusions of this study are summarized as follows : 1 . When the consolidation pressure is increased, the maximum deviator stress of disturbed and undistubed clay in normally consolidated state is increased. Pore pressure parameters and internal friction angle of undisturbed clay are greater than those of disturbed clay. 2. The relationship between pore pressure and axial strain of undisturbed clay in normally consolidated state can be expressed as a hyperbolic function like stress-strain relation proposed by Kondner. 3. In the pore pressure-axial strain relation of disturbed clay in normally consolidated state, failure ratio R'f is greatly deviated in the range of 0.7~0.9 proposed by Christian and Desai. 4. For overconsolided clay, when overconsolidation ratio (OCR) is increased, normalized maximum deviator stress is increased and maximum pore pressure is decreased gradually. 5. Cohesion of overconsolidated clay is greater than that of nomally consolidated clay and internal friction angle slightly is decreased. 6. Pore pressure parameter at failure (Af) of overconsolidated clay is varied with OCR, Af becomes negative values with increment in OCR

  • PDF