• 제목/요약/키워드: Failure ratio

검색결과 2,023건 처리시간 0.024초

A numerical study on the seepage failure by heave in sheeted excavation pits

  • Koltuk, Serdar;Fernandez-Steeger, Tomas M.;Azzam, Rafig
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.513-530
    • /
    • 2015
  • Commonly, the base stability of sheeted excavation pits against seepage failure by heave is evaluated by using two-dimensional groundwater flow models and Terzaghi's failure criterion. The objective of the present study is to investigate the effect of three-dimensional groundwater flow on the heave for sheeted excavation pits with various dimensions. For this purpose, the steady-state groundwater flow analyses are performed by using the finite element program ABAQUS 6.12. It has been shown that, in homogeneous soils depending on the ratio of half of excavation width to embedment depth b/D, the ratio of safety factor obtained from 3D analyses to that obtained from 2D analyses $FS_{(3D)}/FS_{(2D)}$ can reach up to 1.56 and 1.34 for square and circular shaped excavations, respectively. As failure body, both an infinitesimal soil column adjacent to the wall (Baumgart & Davidenkoff's criterion) and a three-dimensional failure body with the width suggested by Terzaghi for two-dimensional cases are used. It has been shown that the ratio of $FS_{(Terzaghi)}/FS_{(Davidenkoff)}$ varies between 0.75 and 0.94 depending on the ratio of b/D. Additionally, the effects of model size, the shape of excavation pit and anisotropic permeability on the heave are studied. Finally, the problem is investigated for excavation pits in stratified soils, and important points are emphasized.

강판으로 휨 보강된 철근콘크리트 보의 조기파괴하중 산정 (Premature Failure Load of Reinforced Concrete Beams with Flexural Strengthened by Steel Plates)

  • 김행준;김우
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.283-292
    • /
    • 2005
  • 강판으로 부분 보강된 철근콘크리트 보의 조기파괴하중을 추정하기 위하여 변수연구를 수행하였다. 설계변수는 전단철근의 유무, 비보강길이의 비, 인장철근에 대한 보강 강판의 철근비, 전단지간 대 보강된 보의 유효깊이 비로 하였다. 유한요소해석 결과, 강판으로 부분 보강된 철근콘크리트 보의 조기파괴를 지배하는 1차 적인 요인은 비보강길이이지만 보강철근비, 전단지간 대 유효깊이의 비 등도 영향을 주는 것으로 나타났다. 설계변수의 조합작용을 고려한 근사식을 기존의 실험결과와 비교한 결과 거의 일치하였다.

남양주-춘천(국도 46 호선)간 도로절개면 붕괴 특성 고찰 (Characteristics of Roadside Cut-Slopes Failures along the 46th National Highway)

  • 구호본;정의진;박성욱
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.527-534
    • /
    • 2000
  • 136 cut slopes which extends from Namyangju to Chunchon city along the 46th national highway were investigated to analyze the influence factors affecting slope instability. Geologic and geotechnical conditions were examined and the detailed investigation were carried out for fifty five failed slopes. failure mode (wedge failure, planar failure, circular failure, sheet eroison and rock falls) are examined with respect to slope inclination, rock type, weathering grade and discontinuity patterns. It is suggested that the failure modes and their dimensions have relations to the morphology and geologic conditions of the slopes. Wedge failure has highest is the most frequent failure mode and falls, sheet erosions, planar failures and circular in descending order of failure percentage. Wedge failure is most dominant failure type over all lithology except quartzite formation. In slopes of well foliated and banded gneiss, failure ratio of wedge is up to 50% ca. Failure ratio(number of rock fall/number of total failure) of rock fall increases with increase fo slope inclinations and decrease of weathering grade. Dimension analyses of failed slopes shows wedge and circular failure has higher value of D/L and D/H than planar failure and sheet erosion.

  • PDF

Seismic behavior of reinforced concrete T-shaped columns under compression-bending-shear and torsion

  • Ping, Chen Zong;Weiwei, Su;Yang, Yang
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.431-444
    • /
    • 2021
  • T-shaped column is usually used as side column in buildings, which is one of the weak members in structural system. This paper presented a quasi-static cyclic loading experiment of six specimens of reinforced concrete (RC) T-shaped columns under compression-flexure-shear-torsion combined loadings to investigate the effect in the ratio of torsion to moment (T/M) and axial compression ratio (n) and height-thickness ratio of flange plate (φ) on their seismic performance. Based on the test results, the failure characteristics, hysteretic curves, ductility, energy dissipation, stiffness degradation and strength degradation were analyzed. The results show that the failure characteristics of RC T-shaped columns mainly depend on the ratio of torsion to moment, which can be divided into bending failure, bending-torsion failure and shear-torsion failure. With the increase of T/M ratio, the torsion ductility coefficient increased, and in a suitable range, the torsion and horizontal displacement ductility coefficient of RC T-shaped columns could be effectively improved with the increase of axial compression ratio and the decrease of height-thickness ratio of flange plate. Besides, the energy dissipation capacity of the specimens mainly depended on the bending and shear energy dissipation capacity. On the other hand, the increase of axial compression ratio and the ratio of torsion to moment could accelerate the torsional and bending stiffness degradation of RC T-shaped columns. Moreover, the degradation coefficient of torsion strength was between 0.80 and 0.98, and that of bending strength was between 0.75 and 1.00.

거동 특성에 따른 사면 파괴 지수 시스템 : SFi-system (Slope Failure Index System Based on the Behavior Characteristics : SFi-system)

  • 윤운상;정의진;최재원;김정환;김원영;김춘식
    • 한국지반공학회논문집
    • /
    • 제18권2호
    • /
    • pp.23-37
    • /
    • 2002
  • 절취 사면에서의 파괴는 사면의 내부 또는 외부 요인들의 결합에 의해 발생한다. 내부 요인은 사면 자체의 지질 또는 형상 조건과 관련된 파괴 요인이며, 외부 요인은 자연적 또는 인위적으로 사면에 가해지는 파괴 요인이다. 각 요인에 의한 사면 파괴에 기치는 영향의 정도는 사면을 구성하는 지반 조건에 따라 다르며, 사면의 거동 특성에 의해 제어된다. 이 연구에서는 사면의 지반 조건을 거동 특성에 따라 구분하는 기준으로 토층심도율(SR), 블록크기비(BR) 및 암석강도를 사용하였다. 이런 기준에 의하면 사면의 지반 조건은 불연속체적 절리 암반과 연속체적 토상 지반, 파쇄 암반, 괴상 암반으로 구분된다. SFi-system은 이와 같이 구분된 지반 조건에 따라 내부 파괴 요인과 외부 파괴 요인을 평가함으로써 사면 파괴 지수(SFi)를 결정하는 평가 시스템이다. 이 평가 시스템을 실제적으로 사면에 적용한 결과, 사면 파괴 지수는 사면 파괴의 가능성 및 규모와 밀접한 관련이 있음을 보여준다. 따라서 SFi-system은 사면의 파괴 예측과 그 특성 분석을 위한 효과적인 도구로 사용될 수 있다.

Seismic performance of exterior R/C beam-column joint under varying axial force

  • Hu, Yanbing;Maeda, Masaki;Suzuki, Yusuke;Jin, Kiwoong
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.623-635
    • /
    • 2021
  • Previous studies have suggested the maximum experimental story shear force of beam-column joint frame does not reach its theoretical value due to beam-column joint failure when the column-to-beam moment capacity ratio was close to 1.0. It was also pointed out that under a certain amount of axial force, an axial collapse and a sudden decrease of lateral load-carrying capacity may occur at the joint. Although increasing joint transverse reinforcement could improve the lateral load-carrying capacity and axial load-carrying capacity of beam-column joint frame, the conditions considering varying axial force were still not well investigated. For this purpose, 7 full-scale specimens with no-axial force and 14 half-scale specimens with varying axial force are designed and subjected to static loading tests. Comparing the experimental results of the two types of specimens, it has indicated that introducing the varying axial force leads to a reduction of the required joint transverse reinforcement ratio which can avoid the beam-column joint failure. For specimens with varying axial force, to prevent beam-column joint failure and axial collapse, the lower limit of joint transverse reinforcement ratio is acquired when given a column-to-beam moment capacity ratio.

마그네슘합금의 피로파손수명의 누적확률분포특성과 신뢰성에 미치는 경계조건의 영향 (Effect of Boundary Conditions on Reliability and Cumulative Distribution Characteristics of Fatigue Failure Life in Magnesium Alloy)

  • 최선순
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.594-599
    • /
    • 2011
  • 본 논문은 마그네슘합금 AZ31의 피로파손수명의 확률론적 특성과 신뢰성에 미치는 경계조건의 영향을 평가하였다. 경계조건으로 시편두께와 응력비 그리고 최대피로하중을 적용하였으며, 각 경계조건별로 세부 실험조건에 대한 피로균열전파실험을 수행하여 피로파손수명에 대한 통계 데이터를 획득하였다. 마그네슘합금의 피로파손수명의 통계적 해석을 위하여 3-모수 와이블분포를 사용하였다. 시편두께가 두꺼울수록, 응력비가 클수록, 그리고 최대피로하중이 작을수록 통계적 피로파손수명이 길게 나타났다. 반면에 시편두께가 얇을수록, 응력비가 작을수록, 그리고 최대피로하중이 클수록 신뢰성이 급격히 감소하였다.

동시경화 강철-복합재료 원형 단일 겹치기 조인트의 최적설계 (Optimum Design of Co-cured Steel-Composite Tubular Single Lap Joints)

  • 조덕현;이대길
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1203-1214
    • /
    • 2000
  • In this paper, a failure model for co-cured steel-composite tubular single lap joints has been proposed incorporating the nonlinear mechanical behavior of steel adherends and different failure mode s such as steel adherend failure and composite adherend failure. The characteristics of the co-cured steel-composite tubular single lap joint were investigated with respect to the test temperature, the stacking sequence of composite adherend, the thickness ratio of steel adherend to composite adherend, and the scarf ratio of steel adherend. Thus, the optimum design method for the co-cured steel-composite tubular single lap joint was suggested.

FRP보강 RC보의 조기파괴기준 II (Premature failure Criteria of RC Beams Strengthened with FRP II)

  • 김태우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.141-144
    • /
    • 2005
  • Rip-off failure and Debonding failure were commonly reported premature failure modes. The main reasons of premature failure in RC beams bonded with FRP were strengthening length and the reinforcement ratio. in this study, On the basis of premature failure mechanism in RC beams bonded with FRP, premature failure criteria were proposed. Also It was verified that Rip-off failure and Debonding failure occured according to premature failure criteria

  • PDF

훅트강섬유보강 고강 콘크리트 보의 휨전단 거동 (Flexural-Shear Behavior of Steel Fiber Reinforced High Strength Concrete Beams)

  • 한형섭;박인철;김명성;김윤일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.567-572
    • /
    • 1999
  • Experimental study was conducted to investigate the flexural-shear behavior of hooked steel fiber reinforced high strength concrete (SFRHC) beams. Twenty beams with shear span-depth ratio of 1.45 were tested, of which variables were the contents of steel fiber with aspect ratio of 60, tension reinforcement ratio and concrete compressive of 60MPa and 80MPa. Test results has shown that shear failure of the beams were changed into flexural-shear failure or flexural failure according to increasing steel fiber content, that SFRHC with slump of 15cm over and fiber volume ratio of 1.5% was possible in practice, and that proper volume ratio of steel fiber was 1.5%.

  • PDF