• Title/Summary/Keyword: Failure ratio

Search Result 2,023, Processing Time 0.025 seconds

A Comparitive Study on the Ultimate Tendon Stress of Unbonded Tendon According to Various Codes (규격별 비부착 긴장재의 극한응력식에 대한 비교 연구)

  • 유성원;서정인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.501-506
    • /
    • 2002
  • The unbonded prestressed concrete(PSC) members exhibit very different structural behavior from that of bonded PSC members because of having different tendon stress increment. Recently, AASHTO changed the provision of ultimate tendon stress with unbonded tendons, because some researches tried to improve the provision of ultimate tendon stress with unbonded tendons. The purpose of the present study is to compare various Codes with the ultimate failure stresses of prestressing(PS) steels for the unbonded PSC members. To this end, Some national Codes have been collected and analyzed. A series of major influencing variables have been included in the analysis. It was found that the span-depth ratio, neutral axis depth-effective depth ratio, concrete compressive strength, effective prestress, and prestressing steel ratio have great influence on the ultimate failure stress of PS steel in unbonded PSC members. The Comparison indicates that existing formulas including ACI and domestic Code's equations shows some unwarranties. The present study allows more realistic analysis and design of prestressed concrete structures with internal unbonded tendons.

  • PDF

A Study on the Behavior of Reinforced Concrete Beams under Pure Torsion -on the Torsional Balanced-Steel Ratio- (순수비틀림을 받는 철근콘크리트 보의 거동에 관한 연구 -평형철근비를 중심으로-)

  • 박병용;음성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.4
    • /
    • pp.69-82
    • /
    • 1990
  • This paper proposes equations for balanced-steel ratio to predict the failure types in reinforced concrete beams under pure torsion. Equations are theoretically derived using a space truss model and considering a softening effect which reduces the strength of concrete due to the diagonal crack. To investigate the validity of the proposed equations, experiments were conducted with 13 specimens. Corre¬lation between predicted failure types by balanced - steel ratio and the experimental results in the literature was good. but not for beams tested in this paper.

The bending-shear-torsion performance of prestressed composite box beam

  • Wei, Hu S.;Yu, Zhao K.;Jie, Wei C.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.577-585
    • /
    • 2017
  • To study the mechanical performances of prestressed steel-concrete composite box beam under combination of bending-shear-torsion, nine composite beams with different ratio of torsion to bending were designed. Torsion was applied to the free end of the beam with jacks controlled accurately with peripherals, as well as concentrated force on the mid-span with jacks. Based on experimental data and relative theories, mechanical properties of composite beams were analyzed, including torsional angle, deformation and failure patterns. The results showed that under certain ratio of torsion to bending, cracking and ultimate torsion increased and reached to its maximum at the ratio of 2. Three phases of process is also discussed, as well as the conditions of each failure mode.

Estimation of Punching Shear Strength for Ultra High Performance Concrete Thin Slab (강섬유 보강 초고성능 콘크리트 슬래브의 뚫림 전단 성능 평가)

  • Park, Ji-Hyun;Hong, Sung-gul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.95-103
    • /
    • 2015
  • UHPC(Ultra High Performance Concrete) is used widely with its remarkable performance, such as strength, ductility and durability. Since the fibers in the UHPC can control the tensile crack, the punching shear capacity of UHPC is higher than that of the conventional concrete. In this paper, seven slabs with different thickness and fiber volume ratio were tested. The ultimate punching shear strength was increased with the fiber volume ratio up to 1%. The shear capacity of specimens with the fiber content 1% and 1.5% do not have big differences. The thicker slab has higher punching shear strength and lower deformation capacity. The critical sections of punching shear failure were similar regardless of the fiber volume ratio, but it were larger in thicker slab.

Effect of Adhesives on the Best Acoustic Radiation Ratio of Sound board for Musical Instrument (악기 향판재의 최적공진비에 미치는 접착제의 영향)

  • 이화형
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2000
  • This study was carried out to analyze the ultrasonic properties of sound board which was glued with various adhesives and to evaluate which adhesive is the best for the acoustic radiation of the musical instrument. The results are as follows: 1. Animal glue is the best adhesive for the sound board with respect to the acoustic radiation ratio of the musical instruments. Epoxy resin and polyvinyl acetate resin are the next group, urea formaldehyde resin and Hot melt are the third group, polychloroprene(CR) resin is the lowest. 2. Epoxy resin, animal glue and Titebond(PVA) give the highest shear strength and the highest wood failure relatively Hot melt and polychloroprene(CR) resin do not meet the standard because of low wood failure.

  • PDF

Different macroscopic models for slender and squat reinforced concrete walls subjected to cyclic loads

  • Shin, Jiuk;Kim, JunHee
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.877-890
    • /
    • 2014
  • The purpose of this study is to present adequate modeling solutions for squat and slender RC walls. ASCE41-13 (American Society of Civil Engineers) specifies that the aspect ratios of height to width for the RC walls affect the hysteresis response. Thus, this study performed non-linear analysis subjected to cyclic loading using two different macroscopic models: one of macroscopic models represents flexural failure of RC walls (Shear Wall Element model) and the other (General Wall Element model) reflects diagonal shear failure occurring in the web of RC walls. These analytical results were compared to previous experimental studies for a slender wall (> aspect ratio of 3.0) and a squat wall (= aspect ratio of 1.0). For the slender wall, the difference between the two macroscopic models was negligible, but the squat wall was significantly affected by parameters for shear behavior in the modeling method. For accurate performance evaluation of RC buildings with squat walls, it would be reasonable to use macroscopic models that give consideration to diagonal shear.

Study on High Aspect Ratio Wing and Optimization of Substructure Location by Using EDISON OPtimal Triangle membrane(Linear and Non-linear analysis) - Static (EDISON OPT 평면요소를 이용한 고 세장비 날개에 대한 선형, 비선형 비교연구 및 추가구조물 위치 최적화)

  • Lee, Da-Woon;Hong, Yoou-Pyo;Shin, Sang-Joon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.262-267
    • /
    • 2016
  • In this paper, to design Human Powered Aircraft(HPAC) with high aspect ratio wing which behave with large displacement under lift distribution causing a failure itself, then steel wire has been designed to prevent its failure. unit load method is used to calculate reaction force on wire and Optimal Triangle(OPT) membrane is employed to analyze its main wing spar with large displacement. EDISON CSD solver, linear static analysis and co-rotational nonlinear static anaysis both using OPT membrane produce behaviors of beam for each case of wire location about main wing spar, and aerodynamic coefficient also, by using aerodynamic analysis tool.

  • PDF

Bending-shear Strength of Concrete-filled Double Skin Circular Steel Tubular Beams with SMA and Rebar in Normal-and-High-strength Concrete

  • Lee, Seung Jo;Park, Jung Min
    • Architectural research
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2021
  • A concrete-filled circular steel tube beam was fabricated, and a bending test was performed to analyze its failure modes, displacement ductility, bending-shear strength, and load-central deflection relationship. For the bending test, the installation position of the shape memory alloy (SMA) inside and outside the double-skin steel tube was used, and the rebar installation position, the concrete strength, the mixing of fibers, and the inner-outer diameter ratio as the main parameters. The test results showed that the installation positions of the reinforcements inside and outside the double-skin steel tube and the inner-outer diameter ratio of the steel tube affected the ductility, maximum load, and failure mode. In general, the specimen made of general concrete with SMA installed outside and inside (OI) the double-skin steel tube showed the best results.

Mechanical behavior of outer square inner circular concrete-filled dual steel tubular stub columns

  • Ding, Fa-xing;Wang, Wenjun;Liu, Xue-mei;Wang, Liping;Sun, Yi
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.305-317
    • /
    • 2021
  • The mechanical behavior of the outer square inner circular concrete-filled dual steel tubular (SCCFT) stub columns under axial compression is investigated by means of experimental research, numerical analysis and theoretical investigation. Parameters such as diameter ratio, concrete strength and steel ratio were discussed to identify their influence on the mechanical properties of SCCFT short columns on the basis of the experimental investigation of seven SCCFT short columns. By establishing a finite element model, nonlinear analysis was performed to discuss the longitudinal and transverse stress of the dual steel tubes. The longitudinal stress characteristics of the core and sandwich concrete were also analyzed. Furthermore, the failure sequence was illustrated and the reasonable cross-section composition of SCCFT stub column was proposed. A formula to predict the axial load capacity of SCCFT stub column was advanced and verified by the results from experiment and the finite element.

A FEM Analysis for Acetabular Component with Negative Poisson's Ratio in Total Hip Arthroplasty

  • 최재봉
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.17-23
    • /
    • 1995
  • Based on the present FEM study for negative Poisson's-ratio UHMWPE, the following conclusions seem expected. 1) Negative Poisson's-ratio UHMWPE transfers less stresses to the subchondral or peripheral iliac bone, compared to the conventional UHMWPE with Poission's-ratio. 2) Negative Poisson's-ratio cup reduces stresses in UHMWPE cup itself as well as metal backing, and subchondral bone. 3) The reduction in periacetabular mechanical stresses would significantly reduce the rate of fatigue failure and consequently reduce the incidence of aseptic loosening of the cup due to wear or bone resorption.

  • PDF