• 제목/요약/키워드: Failure rate test

검색결과 527건 처리시간 0.026초

Failure simulation of nuclear pressure vessel under severe accident conditions: Part I - Material constitutive modeling

  • Eui-Kyun Park;Ji-Su Kim;Jun-Won Park;Yun-Jae Kim;Yukio Takahashi;Kukhee Lim
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4146-4158
    • /
    • 2023
  • This paper proposes a combined plastic and creep constitutive model of A533B1 pressure vessel steel to simulate progressive deformation of nuclear pressure vessels under severe accident conditions. To develop the model, recent tensile test data covering a wide range of temperatures (from RT to 1,100 ℃) and strain rates (from 0.001%/s to 1.0%/s) was used. Comparison with experimental data confirms that the proposed combined plastic and creep model can well reflect effects of temperature and strain rate on tensile behaviour up to failure. In the companion paper (Part II), the proposed model will be used to simulate OECD lower head failure (OLHF) test data.

변형률속도효과를 고려한 일반냉연강판 점용접부의 피로수명평가 (Fatigue Life Evaluation of Spot Weldments of SPC Sheet Including Strain Rate Effect)

  • 송준혁;나석찬;유효선;강희용;양성모
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.48-53
    • /
    • 2006
  • A methodology is described for predicting the fatigue life of the resistance spot weldment including strain rate effect. Because it is difficult to perform a physical failure test with high strain rate, an analytical method is necessary to get the mechanical properties of various strain rate, To this end, quasi-static tensile-shear tests at several strain rate were performed on spot weldments of SPC. These test provided the empirical data with the strain rate. With these results, we formulated the function of fatigue life prediction using the lethargy coefficient which is the global material property from tensile test. And, we predicted the fatigue life of spot weldment at dynamic strain rate. To confirm this method for fatigue life prediction, analytical results were compared with the experimental fatigue data.

다짐된 세립토의 인장강도 측정법의 개발 (Development of Tensile Strength Measurement Technique on Compacted Fine-Grained Soils)

  • 김태형;김찬기;윤중만;유승경
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1538-1545
    • /
    • 2005
  • Theoretical and experimental result studies of the unconfined penetration test (UP) method are conducted to suggest a new test method by improving the UP method for determination of the tensile strength of compacted fine-grained soils. From the theoretical aspect, the tensile strength of the specimen is estimated from the maximum load by the theory of perfect plasticity with assumptions, sufficient local deformability and modified Mohr-Coulomb failure criterion. Experimentally, some factors including relative size of specimen-disc, disc diameter, and loading rate are needed more study, because these factors significantly affect the results of tensile strength. Improvement of the alignement between two discs and specimen in the UP test is also necessary to eliminate the error due to eccentrically loading.

  • PDF

유도무기 시험평가 방법과 신뢰성 성장을 고려한 시험 수량 산출 (Calculation of Sample Size for Guided Missile Considering Test Method and Reliability Growth)

  • 이연호;김재황;이계신;이종신;이명진;김두현
    • 한국군사과학기술학회지
    • /
    • 제20권6호
    • /
    • pp.844-852
    • /
    • 2017
  • Since guided weapon is high-cost and one-shot device which is non-reusable, it requires a lot of resources to prove required accuracy as a part of reliability demonstration. Once a test for proving accuracy rate of guided missile fails, it causes an additional cost and delay of schedule. This study introduces an equation for proper sample size and plan for guided-missile accuracy rate test in order to minimize the risk of test failure. Proper sample size for the test is derived by considering the reliability growth. Furthermore, each task for accuracy rate test is defined according to the development step. Therefore, this study can contribute to reduce sample size for accuracy rate test in order to meet the reliability requirement and assure transparency in the test process.

고속용 풀리형식 장력조정장치 개발 (A Development of Pulley-type Tensioning Device for a High Speed Railway)

  • 조용현;권삼영;박영;이기원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.723-730
    • /
    • 2006
  • In the electrical railway, the tension ascension of contact wire is essential to speed up of train and current collection performance of catenary largely depends on the tension. The tension variation rate of the tensioning device used in existing line limits within 5%, and the tension variation rate of the spring-type tensioning device installed at the section where tensioning length is short bounds within 15%. So it is urgent for us to localize it for high speed line, which the tension variation rate is limited within 3%. Therefore in this study, a pulley-type tensioning device for high speed line is developed. To verify the performance of developed device, a performance test, overload test and failure test is carried out under the code of the Kyung-Bu High Speed line. And it is secured durability performance through a fatigue test.

  • PDF

보철전단계의 치과 임프란트 실패 (PREPROSTHETIC STAGE DENTAL IMPLANT FAILURE)

  • 김재승;장현호;장철호;류성호;강재현
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제27권2호
    • /
    • pp.178-183
    • /
    • 2001
  • Since the introduction of the concept of osseointegration, the success rate of dental implant has increased dramatically. So, the uses of dental implant in the treatment of partially or fully edentulous patients have played an important role in dental rehabilitation. Regardless of high success rate of dental implant, some amounts of fixtures cannot help failing. We can classify dental implant failure according to timing, causative factor, etc. This study is focused on dental implant fixture failure, occurring during preprosthetic stage. There are various reasons that cause implant failure on this periods, such as improper patient selection, poor bone quality, and periimplantitis, etc. We investigate the survival rate of 1058 fixtures, which installed in 306 patients in our clinic from January 1997 to December 1999, according to type, sex, location, fixture length and width, using Kaplan-Meier product-limit method and to compare each other with log-rank test. Overall survival rate was 96.80%, and 33 implants failed over the preprosthetic stage. Our survey data identified posterior location of mandible as being associated with implant failure(P<0.05).

  • PDF

구조물의 속도 의존적 파괴 특성에 대한 연구; 입자동역학을 이용한 취성재료에의 적용 (Study on Rate Dependent Fracture Behavior of Structures; Application to Brittle Materials Using Molecular Dynamics)

  • 김근휘;임지훈;임윤묵
    • 대한토목학회논문집
    • /
    • 제28권4A호
    • /
    • pp.529-536
    • /
    • 2008
  • 구조물의 파괴 거동은 하중의 재하 속도에 따라 달라지는 특성을 보이는데, 이는 재료의 속도 의존성으로부터 비롯된다고 할 수 있다. 이러한 현상은 공학의 여러 분야에서 관심사였지만, 파괴 메커니즘이 명확히 규명되지 않았기 때문에 수치 해석을 통한 연구에는 그 한계점과 어려움이 상존하였다. 본 연구에서는 파괴 거동의 속도 의존성을 이해하고자, 취성재료를 대상으로 입자동역학을 이용한 수치해석을 수행하였다. 직접 인장 시험 시뮬레이션을 위해 노치가 있는 시편을 모델링하고, 취성재료가 갖는 특성을 표현하기 위해 Lennard-Jones 포텐셜을 사용하였다. 6가지의 다른 하중 속도에 따른 균열의 거칠기, 균열의 후퇴와 멈춤, 분기 현상과 같은 동적 파괴 특성을 관찰하였다. 해석 결과를 통해 하중 속도에 따른 파괴 거동의 변화 원인을 에너지 유입-소모율의 개념을 도입하여 설명하고, 재료의 파괴 메커니즘이 갖는 속도 의존성에 대해 이해할 수 있는 단초를 마련하였다. 또한, 기존 실험과의 비교를 통해 실제적인 현상과의 유사성을 밝힘으로써 입자동역학의 공학적 적용 가능성을 제시하였다.

온라인 패션 쇼핑몰 챗봇의 커뮤니케이션 실패에 대한 소비자의 부정적 반응 (Consumers' Negative Responses to the Communication Failure of Chatbots in Online Fashion Shopping Malls)

  • 서민정
    • 한국의류산업학회지
    • /
    • 제24권2호
    • /
    • pp.183-194
    • /
    • 2022
  • This study aims to understand the consumers' negative responses to communication failure of chatbots caused by their imperfections. Specifically, this study examines 1) the relationship among chatbot's communication failure, dissatisfaction, negative behavior (complaint, negative word-of-mouth (nWOM), and inertia); 2) the moderating effect of technostress on the relationship between chatbot's communication failure and dissatisfaction; 3) the differences in the negative responses between the generation MZ and the previous generations. Data were collected via an online survey. First, the participants interacted with the chatbot developed for this survey, to experience the chatbot's communication failure. Thereafter, they responded to a questionnaire. PLS-SEM was conducted using the R software environment to test the hypotheses. This study empirically identified that chatbot's communication failure positively affected dissatisfaction. In addition, the customers who were more dissatisfied with the chatbot's communication failures were more likely to complain than engage in nWOM. Compared to the generation MZ, chatbot's communication failure caused a higher level of dissatisfaction in previous generations. The results suggest that online shopping malls should carefully introduce an improved chatbot service after minimizing its communication failure rate. The chatbot developers of online shopping malls targeting middle-aged and elderly consumers should strive to develop and implement strategies to further alleviate consumers' dissatisfaction in the situation of chatbot's communication failure.

아스팔트 표층과 RCC 기층 계면에서의 부착특성 연구 (Bond Characteristics at the Interface between HMA Surface and RCC Base)

  • 홍기;김영규;배석일;이승우
    • 한국도로학회논문집
    • /
    • 제19권6호
    • /
    • pp.37-46
    • /
    • 2017
  • PURPOSES : A composite pavement utilizes both an asphalt surface and a concrete base. Typically, a concrete base layer provides structural capacity, while an asphalt surface layer provides smoothness and riding quality. This pavement type can be used in conjunction with rollercompacted concrete (RCC) pavement as a base layer due to its fast construction, economic efficiency, and structural performance. However, the service life and functionality of composite pavement may be reduced due to interfacial bond failure. Therefore, adequate interfacial bonding between the asphalt surface and the concrete base is essential to achieving monolithic behavior. The purpose of this study is to investigate the bond characteristics at the interface between asphalt (HMA; hot-mixed asphalt) and the RCC base. METHODS : This study was performed to determine the optimal type and application rate of tack coat material for RCC-base composite pavement. In addition, the core size effect, temperature condition, and bonding failure shape were analyzed to investigate the bonding characteristics at the interface between the RCC base and HMA surface. To evaluate the bond strength, a pull-off test was performed using different diameters of specimens such as 50 mm and 100 mm. Tack coat materials such as RSC-4 and BD-Coat were applied in amounts of 0.3, 0.5, 0.7, 0.9, and $1.1l/m^2$ to determine the optimal application rate. In order to evaluate the bond strength characteristics with temperature changes, a pull-off test was carried out at -15, 0, 20, and $40^{\circ}C$. In addition, the bond failure shapes were analyzed using an image analysis program after the pull-off tests were completed. RESULTS : The test results indicated that the optimal application rate of RSC-4 and BD-Coat were $0.8l/m^2$, $0.9l/m^2$, respectively. The core size effect was determined to be negligible because the bond strengths were similar in specimens with diameters of 50 mm and 100 mm. The bond strengths of RSC-4 and BD-Coat were found to decrease significantly when the temperature increased. As a result of the bonding failure shape in low-temperature conditions such as -15, 0, and $20^{\circ}C$, it was found that most of the debonding occurred at the interface between the tack coat and RCC surface. On the other hand, the interface between the HMA and tack coat was weaker than that between the tack coat and RCC at a high temperature of $40^{\circ}C$. CONCLUSIONS : This study suggested an optimal application rate of tack coat materials to apply to RCC-base composite pavement. The bond strengths at high temperatures were significantly lower than the required bond (tensile) strength of 0.4 MPa. It was known that the temperature was a critical factor affecting the bond strength at the interface of the RCC-base composite pavement.

Rate of softening and sensitivity for weakly cemented sensitive clays

  • Park, DongSoon
    • Geomechanics and Engineering
    • /
    • 제10권6호
    • /
    • pp.827-836
    • /
    • 2016
  • The rate of softening is an important factor to determine whether the failure occurs along localized shear band or in a more diffused manner. In this paper, strength loss and softening rate effect depending on sensitivity are investigated for weakly cemented clays, for both artificially cemented high plasticity San Francisco Bay Mud and low plasticity Yolo Loam. Destructuration and softening behavior for weakly cemented sensitive clays are demonstrated and discussed through multiple vane shear tests. Artificial sensitive clays are prepared in the laboratory for physical modeling or constitutive modeling using a small amount of cement (2 to 5%) with controlled initial water content and curing period. Through test results, shear band thickness is theoretically computed and the rate of softening is represented as a newly introduced parameter, ${\omega}_{80%}$. Consequently, it is found that the softening rate increases with sensitivity for weakly cemented sensitive clays. Increased softening rate represents faster strength loss to residual state and faster minimizing of shear band thickness. Uncemented clay has very low softening rate to 80% strength drop. Also, it is found that higher brittleness index ($I_b$) relatively shows faster softening rate. The result would be beneficial to study of physical modeling for sensitive clays in that artificially constructed high sensitivity (up to $S_t=23$) clay exhibits faster strain softening, which results in localized shear band failure once it is remolded.