• 제목/요약/키워드: Failure of Penetration

검색결과 198건 처리시간 0.029초

Fatigue Strength and Root-Deck Crack Propagation for U-Rib to Deck Welded Joint in Steel Box Girder

  • Zhiyuan, YuanZhou;Bohai, Ji;Di, Li;Zhongqiu, Fu
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1589-1597
    • /
    • 2018
  • Fatigue tests and numerical analysis were carried out to evaluate the fatigue performance at the U-rib to deck welded joint in steel box girder. Twenty specimens were tested corresponding to different penetration rates (80 and 100%) under fatigue bending load, and the fatigue strength was investigated based on hot spot stress (HSS) method. The detailed stress distribution at U-rib to deck welded joint was analyzed by the finite element method, as well as the stress intensity factor of weld root. The test results show that the specimens with fully penetration rate have longer crack propagation life due to the welding geometry, resulting in higher fatigue failure strength. The classification of FAT-90 is reasonable for evaluating fatigue strength by HSS method. The penetration rate has effect on crack propagation angle near the surface, and the 1-mm stress below weld toe and root approves to be more suitable for fatigue stress assessment, because of its high sensitivity to weld geometry than HSS.

연약지반 깊은 굴착에서 지보재 및 지반 파괴 사례 연구 (Case Study of Ground and Supporting System Failure in Soft Ground Deep Excavation)

  • 김성욱;한병원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.537-544
    • /
    • 2005
  • We find out many soft ground deep excavation cases where results of careless overexcavation accelerate the advance of loosening zone of adjacent ground, bucklings of struts and bottom heaves happen due to delayed supporting time. This article introduces a soft ground deep excavation case where steel pipe sheet piles were used with struts as an earth retaining system. There were 2 times of buckling in the supporting system and heaving of bottom ground due to overexcavation and insufficient penetration depth of the steel pipe sheet piles. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

콘크리트 구조물의 확률론적 내구성 해석 (A Probability-Based Durability Analysis of Concrete Structures)

  • 김지상;이광명;정상화;배수호;최규용;양종호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.189-192
    • /
    • 2005
  • In recent years, many research works have been carried out in order to obtain a more controlled durability and long-term performance of concrete structures in chloride containing environments. In particular, the development of new procedures for probability-based durability analysis/design has proved to be very valuable. In this paper, the equation used for modelling of the chloride penetration was based on Fick's Second Law of Diffusion in combination with a time dependent diffusion coefficient. The probability analysis of the durability performance was performed by use of a Monte Carlo Simulation. The procedure was applied to an example based on limited data gathered in this country. The influences of each parameter on the durability of concrete structures are studied and some comments for durability design are given. The new procedure may be very useful in designing concrete structures in chloride containing environments.

  • PDF

실내 모형시험을 통한 교란에 따른 PBD개량효과 연구 (A Study on PBD Improvement Effect depending on disturbance by Laboratory Model Tests failure.)

  • 임진규;김우진;황성원;강권수;김종열
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1132-1135
    • /
    • 2008
  • In this study, a circular and indoor soil tank foundation was manufactured to study the improvement according to the degree of turbulence arising from PBD penetration, using the existing plate-type shoe and improved V-type shoe to change the degree of turbulence. Furthermore, to study the foundation improvement effect, the strength, settlement speed in the turbulence area were compared according to the shoe penetration. The results of the study showed that the V-type shoe reduced the strength coefficient decrease effect, and the foundation improvement effect according to the degree of turbulence was identified.

  • PDF

응력확대계수를 이용한 하중 전달형 필릿 용접부의 피로강도 평가에 관한 연구 (A Study on the Fatigue Life Assessment for Load-carrying Fillet Welded Joints using Stress Intensity Factor)

  • 김명현;강성원;김형래
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.97-102
    • /
    • 2008
  • It is well known that there exist two typical fatigue crack initiation locations in ship structures: one is the weld toe and the other is the weld root where partial penetration weld is performed. In particular, it is important for fillet weldments to avoid weld root cracking in order to prevent catastrophic failure particularly in ship structures. Therefore detail considerations are required for cruciform joints with partial penetration when there is a possibility of weld root crack initiation. For these reasons, fatigue tests on welded joints were performed in this study. Concept of stress intensity factor(SIF) by means of fracture mechanics is applied for predicting fatigue life of fillet welded joints.

Assessment of steel components and reinforced concrete structures under steam explosion conditions

  • Kim, Seung Hyun;Chang, Yoon-Suk;Cho, Yong-Jin
    • Structural Engineering and Mechanics
    • /
    • 제60권2호
    • /
    • pp.337-350
    • /
    • 2016
  • Even though extensive researches have been performed for steam explosion due to their complex mechanisms and inherent uncertainties, establishment of severe accident management guidelines and strategies is one of state-of-the arts in nuclear industry. The goal of this research is primarily to examine effects of vessel failure modes and locations on nuclear facilities under typical steam explosion conditions. Both discrete and integrated models were employed from the viewpoint of structural integrity assessment of steel components and evaluation of the cracking and crushing in reinforced concrete structures. Thereafter, comparison of systematic analysis results was performed; despite the vessel failure modes were dominant, resulting maximum stresses at the all steel components were sufficiently lower than the corresponding yield strengths. Two failure criteria for the reinforced concrete structures such as the limiting failure ratio of concrete and the limiting strains for rebar and liner plate were satisfied under steam explosion conditions. Moreover, stresses of steel components and reinforced concrete structures were reduced with maximum difference of 12% when the integrated model was adopted comparing to those of discrete models.

한국 서남 해상 풍력발전단지 통신망 연구 (Communication Network Architectures for Southwest Offshore Wind Farm)

  • 압델 하미드 모하메드;김영천
    • 한국통신학회논문지
    • /
    • 제42권1호
    • /
    • pp.88-97
    • /
    • 2017
  • With the increasing of the penetration rate of large-scale wind farms, a reliable, highly available and cost-effective communication network is needed. As the failure of a WF communication network will significantly impact the control and real-time monitoring of wind turbines, network reliability should be considered into the WF design process. This paper analyzes the network reliability of different WF configurations for the Southwest Offshore project that is located in Korea. The WF consists of 20 WTs with a total capacity of 60 MW. In this paper, the performance is compared according to a variety of indices such as network unavailability, mean downtime and network cost. To increase the network reliability, partial protection and full protection were investigated as strategies that can overcome the impact of a single point of failure. Furthermore, the reliability performances of different network architectures are analyzed, evaluated and compared.

PELE의 경사진 충격에 따른 파괴 메커니즘에 대한 연구 (A Study of Failure Mechanism for Inclined Impact of PELE)

  • 조종현;이영신
    • 한국군사과학기술학회지
    • /
    • 제15권5호
    • /
    • pp.712-719
    • /
    • 2012
  • Penetrator with enhanced lateral effect(PELE) is a newconcept projectile, without dynamite and fuze. It consists of high-density jacket, closed at its rear end and filled with a low-density filling material. To study the explosion characteristics of PELE, by AUTODYN-3D code, the calculation models of projectile body and bullet target are established and the process of penetrating aluminum-2024 alloy target of PELE is simulated, and the scattering characteristics after penetrating aluminum-2024 alloy target of PELE are studied by different initial velocity. The explicit finite element analysis of PELE fragmentation was implemented with stochastic failure criterion in AUTODYN-3D code. As expansion of filling, the fragments were obtained velocities and dispersed laterally and further more enhancing the damage area largely. The number and shape of the PELE fragments were different depend on impact velocity and incidence angle of filling which fragment generated during penetration and lateral dispersion process.

Failure Analysis of Welded Pipe in Water Supplies for Apartment

  • Lee, Jong Kwon;Hong, Kyung Tae;Hwang, Woon Seok;Koh, Yong Tae;Park, Yong Soo
    • Corrosion Science and Technology
    • /
    • 제3권2호
    • /
    • pp.67-71
    • /
    • 2004
  • Galvanized Steel pipes have been widely used in industries and apartments, Unexpected early leakage has been found in an apartment. Tunneling corrosion or penetration was found in the water supply pipes. The chemical compositions of the pipes and properties of coating layer were evaluated. The pipes met the specification of KS D 3507. The cause of early failure was analyzed through the examination of macrostructures and microstructures, It was found that the pipes were failed by grooving corrosion, which resulted from galvanic corrosion of weld bead and matrix.

집중 하중을 받는 일방향 보강 섬유 금속 적층판의 손상 개시 모델링 (Modeling of damage initiation in singly oriented ply Fiber Metal Laminate under concentrated loading conditions)

  • 남현욱;정성욱;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.65-68
    • /
    • 2001
  • In this research, damage initiation in singly oriented ply (SOP) FML under concentrated loading conditions was studied. The finite element method (FEM) base on the first order shear deformation theory is used for the analysis of fiber orientation effect on FML under concentrated loading conditions. The failure indices were calculated for the variation of fiber orientation and the results were compared with indentation experiments. The failure indices were well matched with damage initiation of SOP FML. Indentation results shows that the crack initiation of SOP FML is determined by stiffness induced by fiber orientation and tile penetration load of SOP FML are influenced by the deformation tendency and boundary conditions.

  • PDF