• Title/Summary/Keyword: Failure distribution

Search Result 1,986, Processing Time 0.025 seconds

Reliability Analysis for Power Plants Based on Insufficient Failure Data (불충분한 고장 데이터에 기초한 발전소의 신뢰도 산정기법에 관한 연구)

  • 이승철;최동수
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.401-406
    • /
    • 2003
  • Electric power industries in several countries are currently undergoing major changes, mainly represented by the privatizations of the power plants and distribution systems. Reliable operations of the power plants directly contribute to the revenue increases of the generation companies in such competitive environments. Strategic optimizations should be performed between the levels of the reliabilities to be maintained and the various preventive maintenance costs, which require the accurate estimations of the power plant reliabilities. However, accurate estimations of the power plant reliabilities are often limited by the lack of accurate power plant failure data. A power plant is not supposed to be failed that often. And if it fails, its impact upon the power system stability is quite substantial in most cases, setting aside the significant revenue losses and lowered company images. Reliability assessment is also important for Independent System Operators(ISO) or Market Operators to properly assess the level of needed compensations for the installed capacity based on the availability of the generation plants. In this paper, we present a power plant reliability estimation technique that can be applied when the failure data is insufficient. Median rank and Weibull distribution are used to accommodate such insufficiency. The Median rank is utilized to derive the cumulative failure probability for each ordered failure. The Weibull distribution is used because of its flexibility of accommodating several different distribution types based on the shape parameter values. The proposed method is applied to small size failure data and its application potential is demonstrated.

Stochastic Properties of Life Distribution with Increasing Tail Failure Rate and Nonparametric Testing Procedure

  • Lim, Jae-Hak;Park, Dong Ho
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.220-228
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the tail behavior of the life distribution which exhibits an increasing failure rate or other positive aging effects after a certain time point. Methods: We characterize the tail behavior of the life distribution with regard to certain reliability measures such as failure rate, mean residual life and reliability function and derive several stochastic properties regarding such life distributions. Also, utilizing an L-statistic and its asymptotic normality, we propose new nonparametric testing procedures which verify if the life distribution has an increasing tail failure rate. Results: We propose the IFR-Tail (Increasing Failure Rate in Tail), DMRL-Tail (Decreasing Mean Residual Life in Tail) and NBU-Tail (New Better than Used in Tail) classes, all of which represent the tail behavior of the life distribution. And we discuss some stochastic properties of these proposed classes. Also, we develop a new nonparametric test procedure for detecting the IFR-Tail class and discuss its relative efficiency to explore the power of the test. Conclusion: The results of our research could be utilized in the study of wide range of applications including the maintenance and warranty policy of the second-hand system.

Cluster and information entropy analysis of acoustic emission during rock failure process

  • Zhang, Zhenghu;Hu, Lihua;Liu, Tiexin;Zheng, Hongchun;Tang, Chun'an
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.135-142
    • /
    • 2021
  • This study provided a new research perspective for processing and analyzing AE data to evaluate rock failure. Cluster method and information entropy theory were introduced to investigate temporal and spatial correlation of acoustic emission (AE) events during the rock failure process. Laboratory experiments of granite subjected to compression were carried out, accompanied by real-time acoustic emission monitoring. The cumulative length and dip angle curves of single links were fitted by different distribution models and distribution functions of link length and directionality were determined. Spatial scale and directionality of AE event distribution, which are characterized by two parameters, i.e., spatial correlation length and spatial correlation directionality, were studied with the normalized applied stress. The entropies of link length and link directionality were also discussed. The results show that the distribution of accumulative link length and directionality obeys Weibull distribution. Spatial correlation length shows an upward trend preceding rock failure, while there are no remarkable upward or downward trends in spatial correlation directionality. There are obvious downward trends in entropies of link length and directionality. This research could enrich mathematical methods for processing AE data and facilitate the early-warning of rock failure-related geological disasters.

Effect of Boundary Conditions of Failure Pressure Models on Reliability Estimation of Buried Pipelines

  • Lee, Ouk-Sub;Pyun, Jang-Sik;Kim, Dong-Hyeok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.12-19
    • /
    • 2003
  • This paper presents the effect of boundary conditions in various failure pressure models published for the estimation of failure pressure. Furthermore, this approach is extended to the failure prediction with the aid of a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with each corrosion defect in buried pipelines for long exposure period with unit of years. A failure probability model based on the von-Mises failure criterion is adapted. The log-normal and standard normal probability functions for varying random variables are adapted. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically investigated for the corrosion pipeline by using an adapted failure probability model and varying failure pressure model.

The Optimized Standards and Criteria for Installing Switches on Distribution Feeder (국내 배편계통의 최적 개폐기 설치 기준)

  • Jo, Nam-Hun;Ha, Bok-Nam;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.5
    • /
    • pp.238-246
    • /
    • 2002
  • Utilities are trying to install the equipment of high quality to avoid deterioration of supply reliability. In addition, many sectionalizing switches which can decrease the total outage value for a fault are installed for the same reason. Therefore, utilities are interested in stun dards and criteria for installing switches to optimize the total cost on distribution systems. The affect of sectionalizing switches installed on distribution feeder is gradually decreased because the failure rate on distribution feeder is decreased. Also the automation for distribution systems is widely applied for the efficient operation. Therefore, the renewal for installation standards of sectionalizing switches Is required to reflect the current operation situation. The variable data is used to consider the KEPCO's real situation of distribution feeder as follows; the feeder capacity, connecting rate, feeder length, failure rate of distribution feeder, the failure rate of switches, perception time of feeder fault, the restoration time for a faulted section, the transfer time to other feeders, and the switching time. In this study, We propose equations which can determine the number of sectionalizing switches for minimizing the outage and switch installation cost.

The optimized standards and criteria for installing switches on distribution feeder (국내 배전계통의 최적 개폐기 설치 기준(I))

  • Cho, Nam-Hun;O, Jae-Hyeong;Lee, Heung-Ho;Ha, Bok-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.70-73
    • /
    • 2002
  • Utilities are trying to install the equipment of high quality to avoid deterioration of supply reliability. In addition, many sectionalizing switches which can decrease the total outage value for a fault are installed for the same reason. Therefore, utilities are interested in standards and criteria for installing switches to optimize the total cost on distribution systems. The affect of sectionalizing switches installed on distribution feeder is gradually decreased because the failure rate on distribution feeder is decreased. Also the automation for distribution systems is widely applied for the efficient operation. Therefore, the renewal for installation standards of sectionalizing switches is required to reflect the current operation situation. The variable data is used to consider the KEPCO's real situation of distribution feeder as follows; the feeder capacity, connecting rate, feeder length, failure rate of distribution feeder, the failure rate of switches, perception time of feeder fault, the restoration time for a faulted section, the transfer time to other feeders, and the switching time. In this study, We propose equations which can determine the number of sectionalizing switches for minimizing the outage and switch installation cost.

  • PDF

Effect of Boundary Conditions on Reliability and Cumulative Distribution Characteristics of Fatigue Failure Life in Magnesium Alloy (마그네슘합금의 피로파손수명의 누적확률분포특성과 신뢰성에 미치는 경계조건의 영향)

  • Choi, Seon-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.594-599
    • /
    • 2011
  • In this paper, the effect of the boundary conditions on the reliability and the cumulative distribution characteristics of the fatigue failure life is analyzed in a magnesium alloy AZ31. The boundary conditions are specimen thickness, stress ratio, and maximum fatigue load. The statistical data of the fatigue failure life are obtained by fatigue crack propagation tests under the detail conditions for each boundary condition. The 3-parameter Weibull distribution is used to analyze a statistical characteristics of the fatigue failure life in magnesium alloy AZ31. It is found that the statistical fatigue failure life is long in the case of a thicker specimen, a larger stress ratio, and a smaller maximum fatigue load. Under the opposite cases, the reliability on the fatigue failure life is rapidly dropped.

Design of Bayesian Zero-Failure Reliability Demonstration Test and Its Application (베이지안 신뢰성입증시험 설계와 활용)

  • Kwon, Young Il
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • A Bayesian zero-failure reliability demonstration test method for products with exponential lifetime distribution is presented. Beta prior distribution for reliability of a product is used to design the Bayesian test plan and selecting a prior distribution using a prior test information is discussed. A test procedure with zero-failure acceptance criterion is developed that guarantees specified reliability of a product with given confidence level. An example is provided to illustrate the use of the developed Bayesian reliability demonstration test method.

The Comparative Software Development Cost Model Considering the Change in the Shape Parameter of the Erlang Distribution (어랑분포의 형상모수 변화에 따른 소프트웨어 개발 비용모형에 관한 비교 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.566-572
    • /
    • 2016
  • Software Reliability implemented in software development is one of the most important issues. In finite failure NHPP software reliability models for software failure analysis, the hazard function that means a failure rate may have constant independently for failure time, non-increasing or non-decreasing pattern. In this study, software development cost analysis considering the variable shape parameter of Erlang distribution as the failure life distribution in the software product testing process was studied. The software failure model was applied finite failure Non-Homogeneous Poisson Procedure and the parameters approximation using maximum likelihood estimation was accompanied. Thus, this paper was presented comparative analysis by applying a software failure time data to the software, considering the shape parameter of Erlang distribution for development cost model analysis. When compared to the cost curve in accordance with the shape parameter, the model of smaller shape can be seen that the optimal software release time delay and more cost. Through this study, it is thought that it can serve as a preliminary information which can basically help the software developers to search for development cost according to software shape parameters.

Analyses of Accelerated Life Tests Data from General Limited Failure Population (GLFP 모형하에서의 가속수명시험 데이터 분석)

  • Kim, Chong-Man
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.1
    • /
    • pp.31-39
    • /
    • 2008
  • This paper proposes a method of estimating the lifetime distribution at use condition for constant stress accelerated life tests when an infant-mortality failure mode as well as wear-out one exists. General limited failure population model is introduced to describe these failure modes. It is assumed that the log lifetime of each failure mode follows a location-scale distribution and a linear relation exists between the location parameter and the stress. An estimation procedure using the expectation and maximization algorithm is proposed. Specific formulas for Weibull distribution are obtained. An illustrative example and the simulation results are given.