The following thesis provides an explanation for the definition of the MIL-HDBK-2155 : Failure Reporting, Analysis and Corrective Action System (FRACAS), which systemizes the collection and analysis of failure data and the feedback process of the results. It also presents a plan based on MIL-HDBK-2155 for the collection and analysis of operating specifications on weapon systems. The collection and analysis of failure data and the feedback process utilizing FRACAS contributes to identifying improvement requirements during equipment operation as well as finding and eliminating the root cause of the failures. The objective of applying FRACAS to weapon systems is to receive source data feedback for reliability enhancements and performance improvements during operation. This is done by recognizing weaknesses in the design or operation by identifying the type of failures that might occur, and by performing Failure Modes, Effects and Criticality Analysis(FMECA) and Failure Tree Analysis(FTA).
Field data have been recorded as the time to failure or the number of failure of systems. We consider the time to failure and covariate variables in some pre-specified follow-up or warranty period. This paper aims to investigate study on the reliability estimation when some additional field data can be collected within-warranty period or after-warranty period. A various likelihood-based methods are outlined and examined for exponential or Weibull distribution.
It is generally known that software reliability growth models such as the Jelinski-Moranda model and the Goel-Okumoto's non-homogeneous Poisson process (NHPP) model cannot be applied to safety-critical software due to a lack of software failure data. In this paper, by applying two of the most widely known software reliability growth models to sample software failure data, we demonstrate the possibility of using the software reliability growth models to prove the high reliability of safety-critical software. The high sensitivity of a piece of software's reliability to software failure data, as well as a lack of sufficient software failure data, is also identified as a possible limitation when applying the software reliability growth models to safety-critical software.
The rapid growth of mobile communication technology has provided the expansion of mobile internet services, particularly mobile realtime transaction takes much weight among mobile fields. There is an increasing demand for various mobile applications to process transactions in a mobile computing fields. Thus, During transmission in wireless networks a base station failure inevitably causes data loss of the base station buffer. It is required to compensate the loss for communication. The existing methods for a base station failure are not adequate because they all suffer from too much overhead and resolve only the link failure. In this paper, we study an efficient recovry systems for a mobile DBMS. We propose SLL (Segment Log List) that enables the mobile host to compensate data loss efficiently in the case of base station failure. In SLL, a base station deliveries an output information of data cells to a mobile host. when a base station fails, the mobile host can retransmit just next data cells. We also prove the efficiency of new method.
Journal of the Korean Data and Information Science Society
/
제20권3호
/
pp.467-474
/
2009
시스템의 한 부품이 고장 나면 고장 난 부품이 분담하던 부하가 고장 나지 않은 다른 부품에 전가되어 다른 부품의 고장률에 영향을 주는 부하분배시스템에 대한 연구가 신뢰성 공학과 생물의학 분야에서 다양하게 이루어져왔다. 본 연구에서는 최소수명을 보증하는 부하분배체계의 체계단위수명 시험에서 부품의 수명관측이 불가능하며 체계의 수명관측이 가능한 경우에, 중도절단된 체계 고장데이터를 이용하여 부하분배체계의 평균수명과 체계 신뢰도의 최우추정치와 추정오차를 줄일 수 있는 수정된 최우추정치를 구하고 컴퓨터 모의실험을 통하여 그 성능을 비교한다.
Life time data analysis requires some time-to-failure data to an extent. Some life tests result in few or no failure. In such cases, it is difficult to access reliability with traditional life tests that record only time to failure. Furthermore, with short product development time, reliability tests must be conducted with severe time constraints. For some devices, it is possible to obtain degradation measurements over time, and these measurements may contain useful information about product reliability. This article describes degradation reliability analysis methods to do inferences and predictions about a failure-time distribution by using software. In addition, the possibility of extension to CBM (Condition Based Maintenance) is suggested as an example of applied degradation data analysis.
Communications for Statistical Applications and Methods
/
제29권4호
/
pp.403-411
/
2022
This article presents an independence test between pairs of interval censored failure times. The Mantel-Haenszel test is commonly applied to test the independence between two categorical variables accompanied with a strata variable. Hsu and Prentice (1996) applied a Mantel-Haenszel test to the sequence of 2 × 2 tables formed at the grids which are composed of failure times. In this article, due to unknown failure times, the suitable grid points should be determined and the status of failure and at risk are estimated at those grid points. We also consider a weighted test statistic to bring a more powerful test. Simulation studies are performed to evaluate the power of test statistics under finite samples. The method is applied to analyze two real data sets, mastitis data from milk cows and an age-related eye disease study.
사용현장에서의 고장데이터는 미리 정해진 보증기간동안 고장이 발생한 제품으로부터 얻어지는 고장시간, 고장원인, 설명변수값과 보증기간동안 고장나지 않는 제품 중 일정비율을 추적조사하여 얻은 설명변수 값들로 구성된다. 사용현장에서 얻어지는 이와 같은 데이터를 이용하여 제품수명분포의 모수가 설명변수와 대수선형관계일 때, 수명분포의 모수에 대한 의사(pseudo) 최우추정량을 구하고 그 점근성질을 규명하였으며, 고장원인별 제품수명이 와이블분포를 따를 때의 의사최우추정량과 점근분산을 구하였다. 제품의 보증기간이 달력시간이고 제품의 고장이 운영시간에 의존하는 경우와 제품의 보증이 달력시간과 운영시간의 혼합인 경우의 분석방법도 제시하였다. 또한 모의 실험을 통하여 추적조사비율에 따른 효과를 알아보았다.
Buckling failure is a typical slope instability mode that should be paid more attention to. It is difficult to provide systematic guidance for the monitoring and management of such slopes due to unclear mechanism. Here we examine buckling failure as the potential instability mode for a slope above a railway tunnel in southwest China. A comprehensive model test system was developed that can be used to conduct buckling failure experiments. The displacement, stress, and strain of the slope were monitored to document the evolution of buckling failure during the experiment. Monitoring data reveal the deformation and stress characteristics of the slope with different slipping mass thicknesses and under different top loads. The test results show that the slipping mass is the main subject of the top load and is the key object of monitoring. Displacement and stress precede buckling failure, so maybe useful predictors of impending failure. However, the response of the stress variation is earlier than displacement variation during the failure process. It is also necessary to monitor the bedrock near the slip face because its stress evolution plays an important role in the early prediction of instability. The position near the slope foot is most prone to buckling failure, so it should be closely monitored.
In this paper, the WEKA platform was used to mine and analyze measured data of floor failure depth and a prediction system of floor failure depth was developed with Java. Based on the standardization and discretization of 35-set measured data of floor failure depth in China, the grey correlation degree analysis on five factors affecting the floor failure depth was carried out. The correlation order from big to small is: mining depth, working face length, floor failure resistance, mining thickness, dip angle of coal seams. Naive Bayes model, neural network model and decision tree model were used for learning and training, and the accuracy of the confusion matrix, detailed accuracy and node error rate were analyzed. Finally, artificial neural network was concluded to be the optimal model. Based on Java language, a prediction system of floor failure depth was developed. With the easy operation in the system, the prediction from measured data and error analyses were performed for nine sets of data. The results show that the WEKA prediction formula has the smallest relative error and the best prediction effect. Besides, the applicability of WEKA prediction formula was analyzed. The results show that WEKA prediction has a better applicability under the coal seam mining depth of 110 m~550 m, dip angle of coal seams of 0°~15° and working face length of 30 m~135 m.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.