• Title/Summary/Keyword: Failure correlation

Search Result 585, Processing Time 0.029 seconds

Modeling of a rockburst related to anomalously low friction effects in great depth

  • Zhan, J.W.;Jin, G.X.;Xu, C.S.;Yang, H.Q.;Liu, J.F.;Zhang, X.D.
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.113-131
    • /
    • 2022
  • A rockburst is a common disaster in deep-tunnel excavation engineering, especially for high-geostress areas. An anomalously low friction effect is one of the most important inducements of rockbursts. To elucidate the correlation between an anomalously low friction effect and a rockburst, we establish a two-dimensional prediction model that considers the discontinuous structure of a rock mass. The degree of freedom of the rotation angle is introduced, thus the motion equations of the blocks under the influence of a transient disturbing force are acquired according to the interactions of the blocks. Based on the two-dimensional discontinuous block model of deep rock mass, a rockburst prediction model is established, and the initiation process of ultra-low friction rockburst is analyzed. In addition, the intensity of a rockburst, including the location, depth, area, and velocity of ejection fragments, can be determined quantitatively using the proposed prediction model. Then, through a specific example, the effects of geomechanical parameters such as the different principal stress ratios, the material properties, a dip of principal stress on the occurrence form and range of rockburst are analyzed. The results indicate that under dynamic disturbance, stress variation on the structural surface in a deep rock mass may directly give rise to a rockburst. The formation of rockburst is characterized by three stages: the appearance of cracks that result from the tension or compression failure of the deformation block, the transformation of strain energy of rock blocks to kinetic energy, and the ejection of some of the free blocks from the surrounding rock mass. Finally, the two-dimensional rockburst prediction model is applied to the construction drainage tunnel project of Jinping II hydropower station. Through the comparison with the field measured rockburst data and UDEC simulation results, it shows that the model in this paper is in good agreement with the actual working conditions, which verifies the accuracy of the model in this paper.

Aspects of size effect on discrete element modeling of normal strength concrete

  • Gyurko, Zoltan;Nemes, Rita
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.521-532
    • /
    • 2021
  • Present paper focuses on the modeling of size effect on the compressive strength of normal concrete with the application of Discrete Element Method (DEM). Test specimens with different size and shape were cast and uniaxial compressive strength test was performed on each sample. Five different concrete mixes were used, all belonging to a different normal strength concrete class (C20/25, C30/37, C35/45, C45/55, and C50/60). The numerical simulations were carried out by using the PFC 5 software, which applies rigid spheres and contacts between them to model the material. DEM modeling of size effect could be advantageous because the development of micro-cracks in the material can be observed and the failure mode can be visualized. The series of experiments were repeated with the model after calibration. The relationship of the parallel bond strength of the contacts and the laboratory compressive strength test was analyzed by aiming to determine a relation between the compressive strength and the bond strength of different sized models. An equation was derived based on Bazant's size effect law to estimate the parallel bond strength of differently sized specimens. The parameters of the equation were optimized based on measurement data using nonlinear least-squares method with SSE (sum of squared errors) objective function. The laboratory test results showed a good agreement with the literature data (compressive strength is decreasing with the increase of the size of the specimen regardless of the shape). The derived estimation models showed strong correlation with the measurement data. The results indicated that the size effect is stronger on concretes with lower strength class due to the higher level of inhomogeneity of the material. It was observed that size effect is more significant on cube specimens than on cylinder samples, which can be caused by the side ratios of the specimens and the size of the purely compressed zone. A limit value for the minimum size of DE model for cubes and cylinder was determined, above which the size effect on compressive strength can be neglected within the investigated size range. The relationship of model size (particle number) and computational time was analyzed and a method to decrease the computational time (number of iterations) of material genesis is proposed.

Development of Classification Model on SAC Refrigerant Charge Level Using Clustering-based Steady-state Identification (군집화 기반 정상상태 식별을 활용한 시스템 에어컨의 냉매 충전량 분류 모델 개발)

  • Jae-Hee, Kim;Yoojeong, Noh;Jong-Hwan, Jeung;Bong-Soo, Choi;Seok-Hoon, Jang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.357-365
    • /
    • 2022
  • Refrigerant mischarging is one of the most frequently occurring failure modes in air conditioners, and both undercharging and overcharging degrade cooling performance. Therefore, it is important to accurately determine the amount of charged refrigerant. In this study, a support vector machine (SVM) model was developed to multi-classify the refrigerant mischarge through steady-state identification via fuzzy clustering techniques. For steady-state identification, a fuzzy clustering algorithm was applied to the air conditioner operation data using the difference between moving averages. The identification results using the proposed method were compared with those using existing steady-state determination techniques studied through the inversed Fisher's discriminant ratio (IFDR). Subsequently, the main features were selected using minimum redundancy maximum relevance (mRMR) considering the correlation among candidate features, and an SVM multi-classification model was devised using the derived features. The proposed method achieves satisfactory accuracy and robustness from test data collected in the new domain.

THE INFLUENCE OF THE PROJECT MANAGER ON THE SUCCESS OF THE CONSTRUCTION PROJECTS

  • Mahdi M Abdulsamad Ali;Nicholas Chileshe
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.345-353
    • /
    • 2009
  • The success and failure of any project depends upon many factors, the Project Manager is considered to be the key contributor to the success of any project, as well as a guide to the team members to achieve the client satisfaction (Cost, Time and Quality). Therefore the main aim of this paper is to provide a practical approach for understanding the importance of the Project Manager and his effectiveness to the success of the construction projects. In addition, the Project Manager's roles, responsibilities and duties have direct impact to the success of the construction projects. In order to identify the thoughts and opinion of the construction industry on this particular assertion, a quantitative study was carried out within the UK construction industry. The result of the study shows that there is an extremely strong correlation between the Project Manager and the success of the construction projects. In construction projects the Project Manager is considered to be one of the most important people who can lead and drive the projects in the right direction and conclude construction projects successfully. Moreover, these can play the most important role regarding the improvement of the organization's performance, the organization's profitability and the client's satisfaction. The research confirmed that the Project Manager is a very essential element to the success of the construction project and have an impact at every stage of the construction project. So it concluded that selection of a Project Manager should be carefully done with regard to experience, knowledge, power/authority and good understanding to the kind of the project.

  • PDF

Estimation of reaction forces at the seabed anchor of the submerged floating tunnel using structural pattern recognition

  • Seongi Min;Kiwon Jeong;Yunwoo Lee;Donghwi Jung;Seungjun Kim
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.405-417
    • /
    • 2023
  • The submerged floating tunnel (SFT) is tethered by mooring lines anchored to the seabed, therefore, the structural integrity of the anchor should be sensitively managed. Despite their importance, reaction forces cannot be simply measured by attaching sensors or load cells because of the structural and environmental characteristics of the submerged structure. Therefore, we propose an effective method for estimating the reaction forces at the seabed anchor of a submerged floating tunnel using a structural pattern model. First, a structural pattern model is established to use the correlation between tunnel motion and anchor reactions via a deep learning algorithm. Once the pattern model is established, it is directly used to estimate the reaction forces by inputting the tunnel motion data, which can be directly measured inside the tunnel. Because the sequential characteristics of responses in the time domain should be considered, the long short-term memory (LSTM) algorithm is mainly used to recognize structural behavioral patterns. Using hydrodynamics-based simulations, big data on the structural behavior of the SFT under various waves were generated, and the prepared datasets were used to validate the proposed method. The simulation-based validation results clearly show that the proposed method can precisely estimate time-series reactions using only acceleration data. In addition to real-time structural health monitoring, the proposed method can be useful for forensics when an unexpected accident or failure is related to the seabed anchors of the SFT.

Experimental research on the behavior of circular SFRC columns reinforced longitudinally by GFRP rebars

  • Iman Saffarian;Gholam Reza Atefatdoost;Seyed Abbas Hosseini;Leila Shahryari
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.513-525
    • /
    • 2023
  • This research presents the experimental and theoretical evaluations on circular steel-fiber-reinforced-concrete (SFRC) columns reinforced by glass-fiber-reinforced-polymer (GFRP) rebar under the axial compressive loading. Test programs were designed to investigate and compare the effect of different parameters on the structural behavior of columns by performing tests. Theses variables included conventional concrete (CC), fiber concrete (FC), steel/GFRP longitudinal rebars, and transversal rebars configurations. A total of 16 specimens were constructed and categorized into four groups in terms of different rebar-concrete configurations, including GFRP-rebar-reinforced-CC columns (GRCC), GFRP-rebar-reinforced-FC columns (GRFC), steel-rebar-reinforced-CC columns (SRCC) and steel-rebar- reinforced-FC columns (SRFC). Experimental observations displayed that failure modes and cracking patterns of four groups of columns were similar, especially in pre-peak branches of load-deflection curves. Although the average ultimate axial load of columns with longitudinal GFRP rebars was obtained by 17.9% less than the average ultimate axial load of columns with longitudinal steel rebars, the average axial ductility index (DI) of them was gained by 10.2% higher than their counterpart columns. Adding steel fibers (SFs) into concrete led to the increases of 7.7% and 6.7% of the axial peak load and the DI of columns than their counterpart columns with CC. The volumetric ratio had greater efficiency on peak loads and DIs of columns than the type of transversal reinforcement. A simple analytical equation was proposed to predict the axial compressive capacity of columns by considering the axial involvement of longitudinal GFRP rebars, volumetric ratio, and steel spiral/hoop rebar. There was a good correlation between test results and predictions of the proposed equation.

Anisotropic Elastic Shear Moduli of Sands Measured by Multi-directional Bender Element Tests in Stress Probe Experiments (사질토의 전단 하중 재하 시 다축 벤더엘리먼트 시험으로 구한 이방적 전단탄성계수)

  • Ko, Young Joo;Jung, Young Hoon;Lee, Choong Hyun;Chung, Choong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.159-166
    • /
    • 2008
  • The stress-strain behavior of soils can usually be regarded as non-linear, while it is also known that the soil exhibits the linear-elastic behavior at pre-failure state (very small strain range, $<10^{-3}%$). This study aims to analyze the variation of anisotropic elastic shear moduli of granular soils in various stress conditions. The stress probe experiments with the triaxial testing device equipped with local strain gages and multi-directional bender elements were conducted. When the stress ratio exceeds the range between -0.5 and 1.5, the elastic shear stiffness in the axial direction deviates from the empirical correlation with current stresses, which indicates that the yielding of soils alters the internal pathway through which the elastic shear wave propagates. The experimental results show that the variation of elastic shear moduli in the horizontal direction closely relates to the volume change of soils.

Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using non-contact measurement method

  • Grzegorz Ludwik Golewski
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.217-229
    • /
    • 2024
  • This paper presents results of visual analysis of cracks formation and propagation of concretes made of quaternary binders (QBC). A composition of the two most commonly used mineral additives, i.e. fly ash (FA) and silica fume (SF) in combination with nanosilica (nS), has been proposed as a partial replacement of the cement. The principal objective of the present study is to achieve information about the effect of simultaneous incorporation of three pozzolans as partial replacement to the OPC on the fracture processes in concretes made from quaternary binders (QBC). The modern and precise non-contact measurement method (NCMM) via digital image correlation (DIC) technique was used, during the studies. In the course of experiments it was established that the substitution of OPC with three pozzolans including the nanoadditive in FA+SF+nS FA+SF+nS combination causes a clear change of brittleness and behavior during fractures in QBCs. It was found that the shape of cracks in unmodified concrete was quasi-linear. Substitution of the binder by SCMs resulted in a slight heterogeneity of the structure of the QBC, including only SF and nS, and clear heterogeneity for concretes with the FA additive. In addition, as content of FA rises throughout each of QBC series, material becomes more ductile and shows less brittle failure. It means that an increase in the FA content in the concrete mix causes a significant change in fracture process in this composite in comparison to concrete with the addition of silica modifiers only.

Strain-dependent-deformation property of Gyeongju compacted bentonite buffer material for engineered barrier system

  • Ivan Jeff Navea;Jebie Balagosa;Seok Yoon;Yun Wook Choo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1854-1862
    • /
    • 2024
  • This study aims to investigate the strain-dependent-deformation property of Gyeongju bentonite buffer material. A series of unconfined compressive tests were performed with cylindrical specimens prepared at varying dry densities (𝜌d = 1.58 g/cm3 to 1.74 g/cm3) using cold isostatic pressing technique. It is found that as 𝜌d increase, the unconfined compressive strength (qu), failure strain, and elastic modulus (E) of Gyeongju compacted bentonite (GCB) increases. Normalized elastic modulus (Esec/Emax) degradation curves of GCB specimens are fitted using Ramberg-Osgood model and the elastic threshold strain (𝜀e,th) is determined through the fitted curves. The strain-dependency of E and Poisson's ratio (v) of GCB were observed. E and v were measured constant below 𝜀e,th of 0.14 %. Then, E decreases while v increases after exceeding the strain threshold. The Esec/Emax degradation curves of GCB in this study suggests wider linear range and higher linearity than those of sedimentary clay in previous study. On top of that, the influence of 𝜌d is observed on Esec/Emax degradation curves of GCB, showing a slight increase in 𝜀e,th with increase in 𝜌d. Furthermore, an empirical model of qu with 𝜌d and a correlation model between qu and E are proposed for Gyeongju bentonite buffer materials.

Research on unsupervised condition monitoring method of pump-type machinery in nuclear power plant

  • Jiyu Zhang;Hong Xia;Zhichao Wang;Yihu Zhu;Yin Fu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2220-2238
    • /
    • 2024
  • As a typical active equipment, pump machinery is widely used in nuclear power plants. Although the mechanism of pump machinery in nuclear power plants is similar to that of conventional pumps, the safety and reliability requirements of nuclear pumps are higher in complex operating environments. Once there is significant performance degradation or failure, it may cause huge security risks and economic losses. There are many pumps mechanical parameters, and it is very important to explore the correlation between multi-dimensional variables and condition. Therefore, a condition monitoring model based on Deep Denoising Autoencoder (DDAE) is constructed in this paper. This model not only ensures low false positive rate, but also realizes early abnormal monitoring and location. In order to alleviate the influence of parameter time-varying effect on the model in long-term monitoring, this paper combined equidistant sampling strategy and DDAE model to enhance the monitoring efficiency. By using the simulation data of reactor coolant pump and the actual centrifugal pump data, the monitoring and positioning capabilities of the proposed scheme under normal and abnormal conditions were verified. This paper has important reference significance for improving the intelligent operation and maintenance efficiency of nuclear power plants.